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3D Navier-Stokes turbulence problem for large Reynolds numbers

Model2 Model and inviscid stationary solutions

According to the Kolmogorov–Obukhov theory [21, 30], chaotic dynamics of the incompress-
ible 3D Navier-Stokes equations

@u

@t
+ u ·ru = �rP + ⌫�u, r · u = 0, (2.1)

for large Reynolds numbers can be described using the concept of isotropic homogeneous tur-
bulence. In this theory, the energy is transported from large (forced) to small (viscous) scales
through a large inertial interval of intermediate scales `, where the velocity fluctuations obey
the power-law h|�u|i / "1/3`1/3 with the mean energy flux " from large to small scales. Such
description, based on the dimensional analysis is known to be incomplete due to the anoma-
lous corrections (not yet explained theoretically) for the exponents of this and higher velocity
moments, see e.g. [22, 15]. Because of the extremely large number of degrees of freedom for
realistic Reynolds numbers, this problem is very di�cult for the numerical analysis.

In this paper, we consider the shell model of turbulence given by an infinite system of
di↵erential equations
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for n = 1, 2, . . ., with constant boundary conditions

u
0

= const, u�1

= const. (2.3)

In this system, the real quantities un model qualitatively the Fourier components of a velocity
field u(k, t) corresponding to wavenumbers |k| = kn (one can also consider un as a charac-
teristic velocity fluctuation at spatial distance ` ⇠ 2⇡/kn), the wavenumbers kn = k

0

2n are
chosen in the form of geometric progression, and ⌫ is the viscosity parameter. System (2.2)
represents the Gledzer-Ohkitani-Yamada shell model [18, 31] taken for purely imaginary shell
velocities �iun; similarly, it can be deduced from the Sabra model of turbulence [24]. For
simplicity, we set k

0

= 1 and consider the boundary conditions u2

�1

+ u2

0

⇠ 1 by an order of
magnitude. The model (2.2) is considered as a “toy model” for 3D Navier-Stokes turbulence
in Eq. (2.1), as it possesses the same scaling symmetry and shares some of the motion invari-
ants [3]. In particular, the quadratic terms in (2.2) mimic the convective nonlinearity and the
pressure term in Eq. (2.1). The clear advantage of the shell model is the drastic reduction in
the number of degrees of freedom, while keeping the infinite-dimensional nature of the flow.

Let us define the “energy” as E =
P

u2

n and the “enstrophy” as ⌦ =
P

k2

nu
2

n. Then the
energy balance equation takes the form similar to the Navier-Stokes equations (see e.g. [14])
as

dE

dt
= ⇧

0

� 2⌫⌦, (2.4)

where
⇧n = knun�1

unun+1

+ 2kn+1

unun+1

un+2

(2.5)

is the energy flux between the shells with wavenumbers kn and kn+1

. Thus, the term ⇧
0

in
Eq. (2.4) represents the energy flux into the system generated by boundary conditions (2.3),
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Gledzer shell model of turbulence (GOY/Sabra for imaginary speeds)
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Boundary conditions (“forcing”): 

Shells n = 1,2,… describe speed fluctuations un at wavenumbers kn = 2n
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Energy:   
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Energy flux:   
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Helicity:   
while the term 2⌫⌦ describes the viscous energy dissipation. A similar balance law holds for
the helicity invariant introduced as H =

P
(�1)nknu2

n, see e.g. [3].
The following three transformations

un 7! 2un+1

, ⌫ 7! 22⌫; (2.6)

un 7! cun, ⌫ 7! c⌫, t 7! t/c; (2.7)

un 7! �nun, �n = ±1, �n�n+1

�n+2

= 1, (2.8)

are the symmetries of system (2.2). Also, the system is invariant under time translations
t 7! t + t

0

. Note that the shift n 7! n + 1 implies the scaling kn 7! kn+1

= 2kn in Fourier
space. Therefore, Eqs. (2.6) and (2.7) are related to the scaling of space-time. The signs �n in
Eq. (2.8) are periodic with �n = �n+3

and can be associated with phase factors in the Fourier
transform induced by physical space translations, see e.g. [3].

Stationary solutions of the inviscid model (⌫ = 0) were described in [4]. The equilibrium
conditions for Eqs. (2.2), after dividing by kn+1

, take the form
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=
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+
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8
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un�2

, n = 1, 2, . . . . (2.9)

If un 6= 0 for all n � 1, then Eqs. (2.9) define recursively the values of all shell speeds un,
n � 3, for given u�1

, u
0

, u
1

, u
2

. Equations (2.9) after multiplication by 2u�1

n�1

u�1

n+1

yield the
recurrent relation for velocity ratios
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=
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2
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2cn+1

, cn =
2un
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, (2.10)

which possesses a single attracting fixed-point cn = 1 as n ! 1. This implies that u
3n+i

is asymptotically proportional to 2�n for each i = 1, 2, 3. Thus, with an increase of n, the
stationary solutions have the period-3 asymptotic form

u
3n+i ! aik

�1/3
3n+i , i = 1, 2, 3, (2.11)

with constant real quantities a
1

, a
2

, a
3

.
Note that the relation (2.11) implies the power law

un ⇠ k�1/3
n , (2.12)

which can be associated with the Kolmogorov scaling law of developed turbulence mentioned
above, as well as with the shock wave solutions in continuous models [29].

3 Viscous stationary solutions

For a positive viscosity, ⌫ > 0, and constant boundary conditions (2.3), numerical simulations
show that the shell model (2.2) possesses a fixed-point attractor, Fig. 1. In this case, the
equilibrium conditions become
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4
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8
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� 1

2
⌫knun, n = 1, 2, . . . , (3.1)
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Figure 1: Solution for the shell model for zero initial conditions, boundary values u�1

=
u
0

= 0.7 and viscosity ⌫ = 2�4N ⇡ 6 ⇥ 10�8 with N = 6. Shown are the values of shell
speeds un(t) for n = 1, 2, . . . converging to their stationary values; the speeds un decrease
(nonmonotonously) with increasing n.

which di↵er from Eq. (2.9) by an additional viscous term. For nonzero shell speeds, Eq. (3.1)
determines the equilibrium state recursively if the four initial speeds u�1

, u
0

, u
1

, u
2

are given.
The speeds u�1

, u
0

are determined by the boundary conditions, while the speeds u
1

, u
2

depend
on the viscosity, as we will see below.

For small viscosity ⌫, the viscous term in Eq. (3.1) is small and the solution is determined
approximately by the inviscid model (2.9) leading to the properties (2.11). However, for any
finite ⌫ > 0, the viscous term becomes important for large shell numbers (small scales), when
⌫kn ⇠ un. Using this estimate with the scaling law (2.12), we introduce the Kolmogorov
wavenumber as kK ⇠ ⌫�3/4. The corresponding shell number

nK = log
2

kK = �3

4
log

2

⌫ (3.2)

separates the region n ⌧ nK of inviscid dynamics from the viscous range n & nK , Fig. 2.
The inviscid region contains the forcing (boundary) range at n ⇠ 1 and the inertial interval
1 ⌧ n ⌧ nK .

In the viscous range, one expects fast decay of velocities un with increasing shell number
n, due to the large factor k2

n of the viscous term in Eq. (2.2). In this case, the last two terms
in Eq. (3.1) are dominant, which yields

un�1

un�2

⇡ 4⌫knun. (3.3)

Writing this expression as a linear equation

log
2

|un| ⇡ log
2

|un�1

|+ log
2

|un�2

|� 2� n� log
2

⌫, (3.4)

one finds the general solution in the form

log
2

|un| ⇡ b�n + b̃�̃n + 5 + n+ log
2

⌫ (3.5)

5

Kolmogorov wavenumber:

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 t

 u
n

Figure 1: Solution for the shell model for zero initial conditions, boundary values u�1

=
u
0

= 0.7 and viscosity ⌫ = 2�4N ⇡ 6 ⇥ 10�8 with N = 6. Shown are the values of shell
speeds un(t) for n = 1, 2, . . . converging to their stationary values; the speeds un decrease
(nonmonotonously) with increasing n.

which di↵er from Eq. (2.9) by an additional viscous term. For nonzero shell speeds, Eq. (3.1)
determines the equilibrium state recursively if the four initial speeds u�1

, u
0

, u
1

, u
2

are given.
The speeds u�1

, u
0

are determined by the boundary conditions, while the speeds u
1

, u
2

depend
on the viscosity, as we will see below.

For small viscosity ⌫, the viscous term in Eq. (3.1) is small and the solution is determined
approximately by the inviscid model (2.9) leading to the properties (2.11). However, for any
finite ⌫ > 0, the viscous term becomes important for large shell numbers (small scales), when
⌫kn ⇠ un. Using this estimate with the scaling law (2.12), we introduce the Kolmogorov
wavenumber as kK ⇠ ⌫�3/4. The corresponding shell number

nK = log
2

kK = �3

4
log

2

⌫ (3.2)

separates the region n ⌧ nK of inviscid dynamics from the viscous range n & nK , Fig. 2.
The inviscid region contains the forcing (boundary) range at n ⇠ 1 and the inertial interval
1 ⌧ n ⌧ nK .

In the viscous range, one expects fast decay of velocities un with increasing shell number
n, due to the large factor k2

n of the viscous term in Eq. (2.2). In this case, the last two terms
in Eq. (3.1) are dominant, which yields

un�1

un�2

⇡ 4⌫knun. (3.3)

Writing this expression as a linear equation

log
2

|un| ⇡ log
2

|un�1

|+ log
2

|un�2

|� 2� n� log
2

⌫, (3.4)

one finds the general solution in the form

log
2

|un| ⇡ b�n + b̃�̃n + 5 + n+ log
2

⌫ (3.5)

5

Kolmogorov shell number:

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 t

 u
n

Figure 1: Solution for the shell model for zero initial conditions, boundary values u�1

=
u
0

= 0.7 and viscosity ⌫ = 2�4N ⇡ 6 ⇥ 10�8 with N = 6. Shown are the values of shell
speeds un(t) for n = 1, 2, . . . converging to their stationary values; the speeds un decrease
(nonmonotonously) with increasing n.

which di↵er from Eq. (2.9) by an additional viscous term. For nonzero shell speeds, Eq. (3.1)
determines the equilibrium state recursively if the four initial speeds u�1

, u
0

, u
1

, u
2

are given.
The speeds u�1

, u
0

are determined by the boundary conditions, while the speeds u
1

, u
2

depend
on the viscosity, as we will see below.

For small viscosity ⌫, the viscous term in Eq. (3.1) is small and the solution is determined
approximately by the inviscid model (2.9) leading to the properties (2.11). However, for any
finite ⌫ > 0, the viscous term becomes important for large shell numbers (small scales), when
⌫kn ⇠ un. Using this estimate with the scaling law (2.12), we introduce the Kolmogorov
wavenumber as kK ⇠ ⌫�3/4. The corresponding shell number

nK = log
2

kK = �3

4
log

2

⌫ (3.2)

separates the region n ⌧ nK of inviscid dynamics from the viscous range n & nK , Fig. 2.
The inviscid region contains the forcing (boundary) range at n ⇠ 1 and the inertial interval
1 ⌧ n ⌧ nK .

In the viscous range, one expects fast decay of velocities un with increasing shell number
n, due to the large factor k2

n of the viscous term in Eq. (2.2). In this case, the last two terms
in Eq. (3.1) are dominant, which yields

un�1

un�2

⇡ 4⌫knun. (3.3)

Writing this expression as a linear equation

log
2

|un| ⇡ log
2

|un�1

|+ log
2

|un�2

|� 2� n� log
2

⌫, (3.4)

one finds the general solution in the form

log
2

|un| ⇡ b�n + b̃�̃n + 5 + n+ log
2

⌫ (3.5)

5

while the term 2⌫⌦ describes the viscous energy dissipation. A similar balance law holds for
the helicity invariant introduced as H =

P
(�1)nknu2

n, see e.g. [3].
The following three transformations

un 7! 2un+1

, ⌫ 7! 22⌫; (2.6)

un 7! cun, ⌫ 7! c⌫, t 7! t/c; (2.7)

un 7! �nun, �n = ±1, �n�n+1

�n+2

= 1, (2.8)

are the symmetries of system (2.2). Also, the system is invariant under time translations
t 7! t + t

0

. Note that the shift n 7! n + 1 implies the scaling kn 7! kn+1

= 2kn in Fourier
space. Therefore, Eqs. (2.6) and (2.7) are related to the scaling of space-time. The signs �n in
Eq. (2.8) are periodic with �n = �n+3
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1

, a
2

, a
3

.
Note that the relation (2.11) implies the power law

un ⇠ k�1/3
n , (2.12)

which can be associated with the Kolmogorov scaling law of developed turbulence mentioned
above, as well as with the shock wave solutions in continuous models [29].

3 Viscous stationary solutions

For a positive viscosity, ⌫ > 0, and constant boundary conditions (2.3), numerical simulations
show that the shell model (2.2) possesses a fixed-point attractor, Fig. 1. In this case, the
equilibrium conditions become
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2
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Figure 1: Solution for the shell model for zero initial conditions, boundary values u�1

=
u
0

= 0.7 and viscosity ⌫ = 2�4N ⇡ 6 ⇥ 10�8 with N = 6. Shown are the values of shell
speeds un(t) for n = 1, 2, . . . converging to their stationary values; the speeds un decrease
(nonmonotonously) with increasing n.

which di↵er from Eq. (2.9) by an additional viscous term. For nonzero shell speeds, Eq. (3.1)
determines the equilibrium state recursively if the four initial speeds u�1

, u
0

, u
1

, u
2

are given.
The speeds u�1

, u
0

are determined by the boundary conditions, while the speeds u
1

, u
2

depend
on the viscosity, as we will see below.

For small viscosity ⌫, the viscous term in Eq. (3.1) is small and the solution is determined
approximately by the inviscid model (2.9) leading to the properties (2.11). However, for any
finite ⌫ > 0, the viscous term becomes important for large shell numbers (small scales), when
⌫kn ⇠ un. Using this estimate with the scaling law (2.12), we introduce the Kolmogorov
wavenumber as kK ⇠ ⌫�3/4. The corresponding shell number

nK = log
2

kK = �3

4
log

2

⌫ (3.2)

separates the region n ⌧ nK of inviscid dynamics from the viscous range n & nK , Fig. 2.
The inviscid region contains the forcing (boundary) range at n ⇠ 1 and the inertial interval
1 ⌧ n ⌧ nK .

In the viscous range, one expects fast decay of velocities un with increasing shell number
n, due to the large factor k2

n of the viscous term in Eq. (2.2). In this case, the last two terms
in Eq. (3.1) are dominant, which yields

un�1

un�2

⇡ 4⌫knun. (3.3)

Writing this expression as a linear equation

log
2

|un| ⇡ log
2

|un�1

|+ log
2

|un�2

|� 2� n� log
2

⌫, (3.4)

one finds the general solution in the form

log
2

|un| ⇡ b�n + b̃�̃n + 5 + n+ log
2

⌫ (3.5)
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n, due to the large factor k2

n of the viscous term in Eq. (2.2). In this case, the last two terms
in Eq. (3.1) are dominant, which yields
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Figure 2: Scaled shell speeds k
1/3
n u

[⌫]
n of the stationary attractor found numerically for the

solution un(t) in Fig. 1. The viscous range position nK = 18 is shown by the vertical dashed
line. The stationary solution is periodic in the inertial range 1 ⌧ n ⌧ nK . The dashed
bold green line shows the viscous asymptotic solution k

1/3
n�3NVn�3N(�) from Eq. (4.4), which

determines the period-3 state (4.6) in the inertial range. The inset compares numerical results
(solid black line) with the asymptotic expression (3.6) (dashed blue line) for b = �0.0011;

plotted are the values of log
2

| log
2

u
[⌫]
n | for n = 14, . . . , 25.

with � = (1+
p
5)/2, �̃ = (1�

p
5)/2 and arbitrary real coe�cients b and b̃. Since � > 1 and

|�̃| < 1, we find the asymptotic behavior as

|un| ⇡ 32⌫kn2
b�n

, n � nK , (3.6)

where the coe�cient b must be negative in order to have |un| ! 0 for large n (similar analysis
was carried out in [10] for a di↵erent shell model). Both asymptotic expressions (2.11) for
n ⌧ nK and (3.6) for n � nK are confirmed numerically, see Fig. 2.

4 Inviscid limit for stationary solutions

Let us denote by u
[⌫]
n the stationary solution corresponding to the viscosity ⌫, with fixed

boundary conditions. For understanding the limit of vanishing viscosity, ⌫ ! +0, we first
study the asymptotic behavior in the viscous range, n & nK , given by Eq. (3.2).

For small viscosity, stationary solutions satisfy the period-3 asymptotic relation (2.11) in
the inertial range 1 ⌧ n ⌧ nK , where the coe�cients a

1

, a
2

, a
3

depend on ⌫. Expression
(2.11) is invariant under the scaling transformation

un 7! 2Nun+3N , (4.1)

with the shift by 3N shell numbers. The viscous range n & nK given by Eq. (3.2) can be
shifted back to its original position, nK 7! nK � 3N , by changing the viscosity as

⌫ 7! 24N⌫. (4.2)
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which di↵er from Eq. (2.9) by an additional viscous term. For nonzero shell speeds, Eq. (3.1)
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are given.
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depend
on the viscosity, as we will see below.

For small viscosity ⌫, the viscous term in Eq. (3.1) is small and the solution is determined
approximately by the inviscid model (2.9) leading to the properties (2.11). However, for any
finite ⌫ > 0, the viscous term becomes important for large shell numbers (small scales), when
⌫kn ⇠ un. Using this estimate with the scaling law (2.12), we introduce the Kolmogorov
wavenumber as kK ⇠ ⌫�3/4. The corresponding shell number
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kK = �3

4
log
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⌫ (3.2)

separates the region n ⌧ nK of inviscid dynamics from the viscous range n & nK , Fig. 2.
The inviscid region contains the forcing (boundary) range at n ⇠ 1 and the inertial interval
1 ⌧ n ⌧ nK .

In the viscous range, one expects fast decay of velocities un with increasing shell number
n, due to the large factor k2

n of the viscous term in Eq. (2.2). In this case, the last two terms
in Eq. (3.1) are dominant, which yields

un�1

un�2

⇡ 4⌫knun. (3.3)

Writing this expression as a linear equation

log
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|+ log
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|� 2� n� log
2

⌫, (3.4)

one finds the general solution in the form
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|un| ⇡ b�n + b̃�̃n + 5 + n+ log
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⌫ (3.5)
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(nonmonotonously) with increasing n.
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approximately by the inviscid model (2.9) leading to the properties (2.11). However, for any
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⌫kn ⇠ un. Using this estimate with the scaling law (2.12), we introduce the Kolmogorov
wavenumber as kK ⇠ ⌫�3/4. The corresponding shell number
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separates the region n ⌧ nK of inviscid dynamics from the viscous range n & nK , Fig. 2.
The inviscid region contains the forcing (boundary) range at n ⇠ 1 and the inertial interval
1 ⌧ n ⌧ nK .

In the viscous range, one expects fast decay of velocities un with increasing shell number
n, due to the large factor k2

n of the viscous term in Eq. (2.2). In this case, the last two terms
in Eq. (3.1) are dominant, which yields
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wavenumber as kK ⇠ ⌫�3/4. The corresponding shell number

nK = log
2

kK = �3

4
log

2

⌫ (3.2)

separates the region n ⌧ nK of inviscid dynamics from the viscous range n & nK , Fig. 2.
The inviscid region contains the forcing (boundary) range at n ⇠ 1 and the inertial interval
1 ⌧ n ⌧ nK .

In the viscous range, one expects fast decay of velocities un with increasing shell number
n, due to the large factor k2

n of the viscous term in Eq. (2.2). In this case, the last two terms
in Eq. (3.1) are dominant, which yields
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Figure 2: Scaled shell speeds k
1/3
n u

[⌫]
n of the stationary attractor found numerically for the

solution un(t) in Fig. 1. The viscous range position nK = 18 is shown by the vertical dashed
line. The stationary solution is periodic in the inertial range 1 ⌧ n ⌧ nK . The dashed
bold green line shows the viscous asymptotic solution k

1/3
n�3NVn�3N(�) from Eq. (4.4), which

determines the period-3 state (4.6) in the inertial range. The inset compares numerical results
(solid black line) with the asymptotic expression (3.6) (dashed blue line) for b = �0.0011;

plotted are the values of log
2

| log
2

u
[⌫]
n | for n = 14, . . . , 25.

with � = (1+
p
5)/2, �̃ = (1�

p
5)/2 and arbitrary real coe�cients b and b̃. Since � > 1 and

|�̃| < 1, we find the asymptotic behavior as

|un| ⇡ 32⌫kn2
b�n

, n � nK , (3.6)

where the coe�cient b must be negative in order to have |un| ! 0 for large n (similar analysis
was carried out in [10] for a di↵erent shell model). Both asymptotic expressions (2.11) for
n ⌧ nK and (3.6) for n � nK are confirmed numerically, see Fig. 2.

4 Inviscid limit for stationary solutions

Let us denote by u
[⌫]
n the stationary solution corresponding to the viscosity ⌫, with fixed

boundary conditions. For understanding the limit of vanishing viscosity, ⌫ ! +0, we first
study the asymptotic behavior in the viscous range, n & nK , given by Eq. (3.2).

For small viscosity, stationary solutions satisfy the period-3 asymptotic relation (2.11) in
the inertial range 1 ⌧ n ⌧ nK , where the coe�cients a

1

, a
2

, a
3

depend on ⌫. Expression
(2.11) is invariant under the scaling transformation

un 7! 2Nun+3N , (4.1)

with the shift by 3N shell numbers. The viscous range n & nK given by Eq. (3.2) can be
shifted back to its original position, nK 7! nK � 3N , by changing the viscosity as

⌫ 7! 24N⌫. (4.2)
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line. The stationary solution is periodic in the inertial range 1 ⌧ n ⌧ nK . The dashed
bold green line shows the viscous asymptotic solution k
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n�3NVn�3N(�) from Eq. (4.4), which

determines the period-3 state (4.6) in the inertial range. The inset compares numerical results
(solid black line) with the asymptotic expression (3.6) (dashed blue line) for b = �0.0011;
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where the coe�cient b must be negative in order to have |un| ! 0 for large n (similar analysis
was carried out in [10] for a di↵erent shell model). Both asymptotic expressions (2.11) for
n ⌧ nK and (3.6) for n � nK are confirmed numerically, see Fig. 2.
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Let us denote by u
[⌫]
n the stationary solution corresponding to the viscosity ⌫, with fixed

boundary conditions. For understanding the limit of vanishing viscosity, ⌫ ! +0, we first
study the asymptotic behavior in the viscous range, n & nK , given by Eq. (3.2).

For small viscosity, stationary solutions satisfy the period-3 asymptotic relation (2.11) in
the inertial range 1 ⌧ n ⌧ nK , where the coe�cients a
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, a
3

depend on ⌫. Expression
(2.11) is invariant under the scaling transformation

un 7! 2Nun+3N , (4.1)

with the shift by 3N shell numbers. The viscous range n & nK given by Eq. (3.2) can be
shifted back to its original position, nK 7! nK � 3N , by changing the viscosity as
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which di↵er from Eq. (2.9) by an additional viscous term. For nonzero shell speeds, Eq. (3.1)
determines the equilibrium state recursively if the four initial speeds u�1

, u
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are given.
The speeds u�1
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are determined by the boundary conditions, while the speeds u
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depend
on the viscosity, as we will see below.

For small viscosity ⌫, the viscous term in Eq. (3.1) is small and the solution is determined
approximately by the inviscid model (2.9) leading to the properties (2.11). However, for any
finite ⌫ > 0, the viscous term becomes important for large shell numbers (small scales), when
⌫kn ⇠ un. Using this estimate with the scaling law (2.12), we introduce the Kolmogorov
wavenumber as kK ⇠ ⌫�3/4. The corresponding shell number
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4
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separates the region n ⌧ nK of inviscid dynamics from the viscous range n & nK , Fig. 2.
The inviscid region contains the forcing (boundary) range at n ⇠ 1 and the inertial interval
1 ⌧ n ⌧ nK .

In the viscous range, one expects fast decay of velocities un with increasing shell number
n, due to the large factor k2

n of the viscous term in Eq. (2.2). In this case, the last two terms
in Eq. (3.1) are dominant, which yields
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solution un(t) in Fig. 1. The viscous range position nK = 18 is shown by the vertical dashed
line. The stationary solution is periodic in the inertial range 1 ⌧ n ⌧ nK . The dashed
bold green line shows the viscous asymptotic solution k

1/3
n�3NVn�3N(�) from Eq. (4.4), which

determines the period-3 state (4.6) in the inertial range. The inset compares numerical results
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where the coe�cient b must be negative in order to have |un| ! 0 for large n (similar analysis
was carried out in [10] for a di↵erent shell model). Both asymptotic expressions (2.11) for
n ⌧ nK and (3.6) for n � nK are confirmed numerically, see Fig. 2.

4 Inviscid limit for stationary solutions

Let us denote by u
[⌫]
n the stationary solution corresponding to the viscosity ⌫, with fixed

boundary conditions. For understanding the limit of vanishing viscosity, ⌫ ! +0, we first
study the asymptotic behavior in the viscous range, n & nK , given by Eq. (3.2).

For small viscosity, stationary solutions satisfy the period-3 asymptotic relation (2.11) in
the inertial range 1 ⌧ n ⌧ nK , where the coe�cients a

1

, a
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, a
3

depend on ⌫. Expression
(2.11) is invariant under the scaling transformation
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with the shift by 3N shell numbers. The viscous range n & nK given by Eq. (3.2) can be
shifted back to its original position, nK 7! nK � 3N , by changing the viscosity as
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n+3N ! Vn of the limit (4.4) shown for N = 1, 3, 5 and N ! 1
based on numerical simulations with the conditions of Fig. 1.

Thus, one can expect that the combination of transformations (4.1) and (4.2) leaves the
stationary solution approximately unchanged, i.e.,

u[⌫]
n ⇡ 2Nu[⌫N ]

n+3N , ⌫ = 24N⌫N . (4.3)

This expression is valid for all n except for the boundary layer near n = 1, which is not shift-
invariant. Since relation (4.3) should be satisfied with higher accuracy for a smaller viscosity,
we consider the limit

Vn(�) = lim
N!1

2Nu[⌫N ]

n+3N , ⌫N = 2�4(�+N), n,N 2 Z, (4.4)

where n is an arbitrary (positive or negative) integer and ⌫N ! 0 as N ! 1 for a fixed
parameter � 2 R. Existence of this limit is confirmed numerically in Fig. 3. In Fig. 2 the
solution k

1/3
n u

[⌫N ]

n (solid line) is presented together with its viscous range asymptotic form

k
1/3
n�3NVn�3N(�) (dashed green line) given by Eq. (4.4).
Combining Eqs. (2.6) and (2.7) with c = 2�2/3, we obtain the symmetry transformation

un 7! 21/3un+1

, ⌫ 7! 24/3⌫, t 7! 22/3t, (4.5)

which leaves Eq. (2.2) invariant. Hence, expression of the limit in Eq. (4.4) represents the
symmetry transformation (4.5) repeated 3N times for stationary solutions. In particular, this
implies that Vn(�) is a stationary solution for the viscous system with ⌫ = 2�4�. The inertial
range of Vn(�) with the period-3 behavior (2.11) extends to large negative n (see Figs. 2 and
3) leading to the boundary condition

V
3n+i(�) ! Ai(�)k

�1/3
3n+i as n ! �1, i = 1, 2, 3. (4.6)

The coe�cients Ai depend on � (see Fig. 4a) and can be written using Eqs. (4.4) and (4.6)
as

Ai(�) = lim
n!�1

lim
N!1

k1/3
m u[⌫N ]

m ,

m = 3(n+N) + i, ⌫N = 2�4(�+N), i = 1, 2, 3.
(4.7)
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Figure 2: Scaled shell speeds k
1/3
n u

[⌫]
n of the stationary attractor found numerically for the

solution un(t) in Fig. 1. The viscous range position nK = 18 is shown by the vertical dashed
line. The stationary solution is periodic in the inertial range 1 ⌧ n ⌧ nK . The dashed
bold green line shows the viscous asymptotic solution k

1/3
n�3NVn�3N(�) from Eq. (4.4), which

determines the period-3 state (4.6) in the inertial range. The inset compares numerical results
(solid black line) with the asymptotic expression (3.6) (dashed blue line) for b = �0.0011;

plotted are the values of log
2

| log
2

u
[⌫]
n | for n = 14, . . . , 25.

with � = (1+
p
5)/2, �̃ = (1�

p
5)/2 and arbitrary real coe�cients b and b̃. Since � > 1 and

|�̃| < 1, we find the asymptotic behavior as

|un| ⇡ 32⌫kn2
b�n

, n � nK , (3.6)

where the coe�cient b must be negative in order to have |un| ! 0 for large n (similar analysis
was carried out in [10] for a di↵erent shell model). Both asymptotic expressions (2.11) for
n ⌧ nK and (3.6) for n � nK are confirmed numerically, see Fig. 2.

4 Inviscid limit for stationary solutions

Let us denote by u
[⌫]
n the stationary solution corresponding to the viscosity ⌫, with fixed

boundary conditions. For understanding the limit of vanishing viscosity, ⌫ ! +0, we first
study the asymptotic behavior in the viscous range, n & nK , given by Eq. (3.2).

For small viscosity, stationary solutions satisfy the period-3 asymptotic relation (2.11) in
the inertial range 1 ⌧ n ⌧ nK , where the coe�cients a

1

, a
2

, a
3

depend on ⌫. Expression
(2.11) is invariant under the scaling transformation

un 7! 2Nun+3N , (4.1)

with the shift by 3N shell numbers. The viscous range n & nK given by Eq. (3.2) can be
shifted back to its original position, nK 7! nK � 3N , by changing the viscosity as

⌫ 7! 24N⌫. (4.2)
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where the coe�cient b must be negative in order to have |un| ! 0 for large n (similar analysis
was carried out in [10] for a di↵erent shell model). Both asymptotic expressions (2.11) for
n ⌧ nK and (3.6) for n � nK are confirmed numerically, see Fig. 2.
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Let us denote by u
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n the stationary solution corresponding to the viscosity ⌫, with fixed

boundary conditions. For understanding the limit of vanishing viscosity, ⌫ ! +0, we first
study the asymptotic behavior in the viscous range, n & nK , given by Eq. (3.2).

For small viscosity, stationary solutions satisfy the period-3 asymptotic relation (2.11) in
the inertial range 1 ⌧ n ⌧ nK , where the coe�cients a
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depend on ⌫. Expression
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with the shift by 3N shell numbers. The viscous range n & nK given by Eq. (3.2) can be
shifted back to its original position, nK 7! nK � 3N , by changing the viscosity as
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n+3N ! Vn of the limit (4.4) shown for N = 1, 3, 5 and N ! 1
based on numerical simulations with the conditions of Fig. 1.

Thus, one can expect that the combination of transformations (4.1) and (4.2) leaves the
stationary solution approximately unchanged, i.e.,

u[⌫]
n ⇡ 2Nu[⌫N ]

n+3N , ⌫ = 24N⌫N . (4.3)

This expression is valid for all n except for the boundary layer near n = 1, which is not shift-
invariant. Since relation (4.3) should be satisfied with higher accuracy for a smaller viscosity,
we consider the limit

Vn(�) = lim
N!1

2Nu[⌫N ]

n+3N , ⌫N = 2�4(�+N), n,N 2 Z, (4.4)

where n is an arbitrary (positive or negative) integer and ⌫N ! 0 as N ! 1 for a fixed
parameter � 2 R. Existence of this limit is confirmed numerically in Fig. 3. In Fig. 2 the
solution k

1/3
n u

[⌫N ]

n (solid line) is presented together with its viscous range asymptotic form

k
1/3
n�3NVn�3N(�) (dashed green line) given by Eq. (4.4).
Combining Eqs. (2.6) and (2.7) with c = 2�2/3, we obtain the symmetry transformation

un 7! 21/3un+1

, ⌫ 7! 24/3⌫, t 7! 22/3t, (4.5)

which leaves Eq. (2.2) invariant. Hence, expression of the limit in Eq. (4.4) represents the
symmetry transformation (4.5) repeated 3N times for stationary solutions. In particular, this
implies that Vn(�) is a stationary solution for the viscous system with ⌫ = 2�4�. The inertial
range of Vn(�) with the period-3 behavior (2.11) extends to large negative n (see Figs. 2 and
3) leading to the boundary condition

V
3n+i(�) ! Ai(�)k

�1/3
3n+i as n ! �1, i = 1, 2, 3. (4.6)

The coe�cients Ai depend on � (see Fig. 4a) and can be written using Eqs. (4.4) and (4.6)
as

Ai(�) = lim
n!�1

lim
N!1

k1/3
m u[⌫N ]

m ,

m = 3(n+N) + i, ⌫N = 2�4(�+N), i = 1, 2, 3.
(4.7)
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n+3N ! Vn of the limit (4.4) shown for N = 1, 3, 5 and N ! 1
based on numerical simulations with the conditions of Fig. 1.

Thus, one can expect that the combination of transformations (4.1) and (4.2) leaves the
stationary solution approximately unchanged, i.e.,
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n ⇡ 2Nu[⌫N ]

n+3N , ⌫ = 24N⌫N . (4.3)

This expression is valid for all n except for the boundary layer near n = 1, which is not shift-
invariant. Since relation (4.3) should be satisfied with higher accuracy for a smaller viscosity,
we consider the limit

Vn(�) = lim
N!1

2Nu[⌫N ]

n+3N , ⌫N = 2�4(�+N), n,N 2 Z, (4.4)

where n is an arbitrary (positive or negative) integer and ⌫N ! 0 as N ! 1 for a fixed
parameter � 2 R. Existence of this limit is confirmed numerically in Fig. 3. In Fig. 2 the
solution k

1/3
n u

[⌫N ]

n (solid line) is presented together with its viscous range asymptotic form

k
1/3
n�3NVn�3N(�) (dashed green line) given by Eq. (4.4).
Combining Eqs. (2.6) and (2.7) with c = 2�2/3, we obtain the symmetry transformation

un 7! 21/3un+1

, ⌫ 7! 24/3⌫, t 7! 22/3t, (4.5)

which leaves Eq. (2.2) invariant. Hence, expression of the limit in Eq. (4.4) represents the
symmetry transformation (4.5) repeated 3N times for stationary solutions. In particular, this
implies that Vn(�) is a stationary solution for the viscous system with ⌫ = 2�4�. The inertial
range of Vn(�) with the period-3 behavior (2.11) extends to large negative n (see Figs. 2 and
3) leading to the boundary condition

V
3n+i(�) ! Ai(�)k

�1/3
3n+i as n ! �1, i = 1, 2, 3. (4.6)

The coe�cients Ai depend on � (see Fig. 4a) and can be written using Eqs. (4.4) and (4.6)
as

Ai(�) = lim
n!�1

lim
N!1

k1/3
m u[⌫N ]

m ,

m = 3(n+N) + i, ⌫N = 2�4(�+N), i = 1, 2, 3.
(4.7)
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Figure 4: a) Functions Ai(�) determining the period-3 stationary state in the inertial interval
depending on the parameter � for boundary conditions of Fig. 1. b) The function ↵(�)
determining the universal period-3 stationary state (4.17) in the inertial interval. Squares

(i = 1), circles (i = 2) and diamonds (i = 3) represent the values of ↵ = D�1/3k
1/3
3n+i|u3n+i|

for n = 4 versus �� 1
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obtained in numerical tests with random boundary conditions
and random |�| < 1/2.

The order of the limits in Eq. (4.7) is important. It describes the period-3 stationary solution
in the inertial interval 1 ⌧ m ⌧ nK , where nK = 3(� + N) ! 1 with vanishing viscosity
⌫N ! 0. By inspection of Eq. (4.7), one can check that the relations

Ai(�+ k) = Ai(�), i = 1, 2, 3, k 2 Z, (4.8)

are valid for any integer k.
The obtained results show that the period-3 asymptotic form (2.11) depends on the pa-

rameter � of the inviscid limit. This leads to the important conclusion that the inviscid limit
lim⌫!+0

u
[⌫]
n for stationary solutions does not exist in the usual sense, while one can define an

infinite number of inviscid stationary solutions

Un(�) = lim
N!1

u[⌫N ]

n , ⌫N = 2�4(�+N), (4.9)

obtained for specific viscosity subsequences ⌫N ! 0 depending on the parameter �. These
solutions satisfy the condition

U
3n+i(�) ! Ai(�)k

�1/3
3n+i , i = 1, 2, 3, n ! 1, (4.10)

where the coe�cients Ai(�) are determined in Eq. (4.7) by the viscous mechanism for specific
boundary conditions. Since the values � and �+ k with any integer k yield the same inviscid
solutions, the parameter � should be considered modulo 1.

Substituting expression (4.10) into Eq. (2.5), we find

D(�) = lim
n!1

⇧n = 3A
1

(�)A
2

(�)A
3

(�) (4.11)
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n+3N ! Vn of the limit (4.4) shown for N = 1, 3, 5 and N ! 1
based on numerical simulations with the conditions of Fig. 1.

Thus, one can expect that the combination of transformations (4.1) and (4.2) leaves the
stationary solution approximately unchanged, i.e.,

u[⌫]
n ⇡ 2Nu[⌫N ]

n+3N , ⌫ = 24N⌫N . (4.3)

This expression is valid for all n except for the boundary layer near n = 1, which is not shift-
invariant. Since relation (4.3) should be satisfied with higher accuracy for a smaller viscosity,
we consider the limit

Vn(�) = lim
N!1

2Nu[⌫N ]

n+3N , ⌫N = 2�4(�+N), n,N 2 Z, (4.4)

where n is an arbitrary (positive or negative) integer and ⌫N ! 0 as N ! 1 for a fixed
parameter � 2 R. Existence of this limit is confirmed numerically in Fig. 3. In Fig. 2 the
solution k

1/3
n u

[⌫N ]

n (solid line) is presented together with its viscous range asymptotic form

k
1/3
n�3NVn�3N(�) (dashed green line) given by Eq. (4.4).
Combining Eqs. (2.6) and (2.7) with c = 2�2/3, we obtain the symmetry transformation

un 7! 21/3un+1

, ⌫ 7! 24/3⌫, t 7! 22/3t, (4.5)

which leaves Eq. (2.2) invariant. Hence, expression of the limit in Eq. (4.4) represents the
symmetry transformation (4.5) repeated 3N times for stationary solutions. In particular, this
implies that Vn(�) is a stationary solution for the viscous system with ⌫ = 2�4�. The inertial
range of Vn(�) with the period-3 behavior (2.11) extends to large negative n (see Figs. 2 and
3) leading to the boundary condition

V
3n+i(�) ! Ai(�)k

�1/3
3n+i as n ! �1, i = 1, 2, 3. (4.6)

The coe�cients Ai depend on � (see Fig. 4a) and can be written using Eqs. (4.4) and (4.6)
as

Ai(�) = lim
n!�1

lim
N!1

k1/3
m u[⌫N ]

m ,

m = 3(n+N) + i, ⌫N = 2�4(�+N), i = 1, 2, 3.
(4.7)
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n+3N ! Vn of the limit (4.4) shown for N = 1, 3, 5 and N ! 1
based on numerical simulations with the conditions of Fig. 1.

Thus, one can expect that the combination of transformations (4.1) and (4.2) leaves the
stationary solution approximately unchanged, i.e.,

u[⌫]
n ⇡ 2Nu[⌫N ]

n+3N , ⌫ = 24N⌫N . (4.3)

This expression is valid for all n except for the boundary layer near n = 1, which is not shift-
invariant. Since relation (4.3) should be satisfied with higher accuracy for a smaller viscosity,
we consider the limit

Vn(�) = lim
N!1

2Nu[⌫N ]

n+3N , ⌫N = 2�4(�+N), n,N 2 Z, (4.4)

where n is an arbitrary (positive or negative) integer and ⌫N ! 0 as N ! 1 for a fixed
parameter � 2 R. Existence of this limit is confirmed numerically in Fig. 3. In Fig. 2 the
solution k

1/3
n u

[⌫N ]

n (solid line) is presented together with its viscous range asymptotic form

k
1/3
n�3NVn�3N(�) (dashed green line) given by Eq. (4.4).
Combining Eqs. (2.6) and (2.7) with c = 2�2/3, we obtain the symmetry transformation

un 7! 21/3un+1

, ⌫ 7! 24/3⌫, t 7! 22/3t, (4.5)

which leaves Eq. (2.2) invariant. Hence, expression of the limit in Eq. (4.4) represents the
symmetry transformation (4.5) repeated 3N times for stationary solutions. In particular, this
implies that Vn(�) is a stationary solution for the viscous system with ⌫ = 2�4�. The inertial
range of Vn(�) with the period-3 behavior (2.11) extends to large negative n (see Figs. 2 and
3) leading to the boundary condition

V
3n+i(�) ! Ai(�)k

�1/3
3n+i as n ! �1, i = 1, 2, 3. (4.6)

The coe�cients Ai depend on � (see Fig. 4a) and can be written using Eqs. (4.4) and (4.6)
as

Ai(�) = lim
n!�1

lim
N!1

k1/3
m u[⌫N ]

m ,

m = 3(n+N) + i, ⌫N = 2�4(�+N), i = 1, 2, 3.
(4.7)
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Figure 4: a) Functions Ai(�) determining the period-3 stationary state in the inertial interval
depending on the parameter � for boundary conditions of Fig. 1. b) The function ↵(�)
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obtained in numerical tests with random boundary conditions
and random |�| < 1/2.

The order of the limits in Eq. (4.7) is important. It describes the period-3 stationary solution
in the inertial interval 1 ⌧ m ⌧ nK , where nK = 3(� + N) ! 1 with vanishing viscosity
⌫N ! 0. By inspection of Eq. (4.7), one can check that the relations

Ai(�+ k) = Ai(�), i = 1, 2, 3, k 2 Z, (4.8)

are valid for any integer k.
The obtained results show that the period-3 asymptotic form (2.11) depends on the pa-

rameter � of the inviscid limit. This leads to the important conclusion that the inviscid limit
lim⌫!+0
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n for stationary solutions does not exist in the usual sense, while one can define an

infinite number of inviscid stationary solutions
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obtained for specific viscosity subsequences ⌫N ! 0 depending on the parameter �. These
solutions satisfy the condition

U
3n+i(�) ! Ai(�)k
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3n+i , i = 1, 2, 3, n ! 1, (4.10)

where the coe�cients Ai(�) are determined in Eq. (4.7) by the viscous mechanism for specific
boundary conditions. Since the values � and �+ k with any integer k yield the same inviscid
solutions, the parameter � should be considered modulo 1.

Substituting expression (4.10) into Eq. (2.5), we find
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obtained in numerical tests with random boundary conditions
and random |�| < 1/2.

The order of the limits in Eq. (4.7) is important. It describes the period-3 stationary solution
in the inertial interval 1 ⌧ m ⌧ nK , where nK = 3(� + N) ! 1 with vanishing viscosity
⌫N ! 0. By inspection of Eq. (4.7), one can check that the relations

Ai(�+ k) = Ai(�), i = 1, 2, 3, k 2 Z, (4.8)

are valid for any integer k.
The obtained results show that the period-3 asymptotic form (2.11) depends on the pa-
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n for stationary solutions does not exist in the usual sense, while one can define an
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Figure 2: Scaled shell speeds k
1/3
n u

[⌫]
n of the stationary attractor found numerically for the

solution un(t) in Fig. 1. The viscous range position nK = 18 is shown by the vertical dashed
line. The stationary solution is periodic in the inertial range 1 ⌧ n ⌧ nK . The dashed
bold green line shows the viscous asymptotic solution k

1/3
n�3NVn�3N(�) from Eq. (4.4), which

determines the period-3 state (4.6) in the inertial range. The inset compares numerical results
(solid black line) with the asymptotic expression (3.6) (dashed blue line) for b = �0.0011;

plotted are the values of log
2

| log
2

u
[⌫]
n | for n = 14, . . . , 25.

with � = (1+
p
5)/2, �̃ = (1�

p
5)/2 and arbitrary real coe�cients b and b̃. Since � > 1 and

|�̃| < 1, we find the asymptotic behavior as

|un| ⇡ 32⌫kn2
b�n

, n � nK , (3.6)

where the coe�cient b must be negative in order to have |un| ! 0 for large n (similar analysis
was carried out in [10] for a di↵erent shell model). Both asymptotic expressions (2.11) for
n ⌧ nK and (3.6) for n � nK are confirmed numerically, see Fig. 2.

4 Inviscid limit for stationary solutions

Let us denote by u
[⌫]
n the stationary solution corresponding to the viscosity ⌫, with fixed

boundary conditions. For understanding the limit of vanishing viscosity, ⌫ ! +0, we first
study the asymptotic behavior in the viscous range, n & nK , given by Eq. (3.2).
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the inertial range 1 ⌧ n ⌧ nK , where the coe�cients a

1

, a
2

, a
3

depend on ⌫. Expression
(2.11) is invariant under the scaling transformation

un 7! 2Nun+3N , (4.1)

with the shift by 3N shell numbers. The viscous range n & nK given by Eq. (3.2) can be
shifted back to its original position, nK 7! nK � 3N , by changing the viscosity as

⌫ 7! 24N⌫. (4.2)
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for the energy flux in the inertial interval. This value is equal to the injected energy flux ⇧
0

because the viscous dissipation acts only at infinitesimal viscous scales (infinite shell numbers
n). Since dE/dt = 0 for the stationary solution in Eq. (2.4), we find that the value D(�)
represents the total energy dissipation rate of the inviscid solution Un(�). This phenomenon
of finite dissipation in the inviscid limit is known as the dissipation anomaly [12].

We described the vanishing viscosity limit of stationary solutions under fixed boundary
conditions, which were taken in the numerical simulations as u�1

= u
0

= 0.7. Using the
symmetry (2.7) with an arbitrary coe�cient c > 0, we see that Ũn = cUn(�) is the inviscid
solution obtained in the vanishing viscosity limit ⌫̃N = c⌫N = c2�4(�+N) ! 0 for the boundary
conditions cu�1

and cu
0

. For this solution, conditions (4.10) are given by the values Ãi =
cAi(�) and the energy dissipation rate (4.11) becomes D̃ = c3D(�). Taking c = 24(���̃), one
writes ⌫̃N = 2�4(�̃+N) and the obtained relations can be summarized as

D̃1/3

D1/3(�)
=

Ãi

Ai(�)
=

2�4�̃

2�4�
, i = 1, 2, 3. (4.12)

The two equalities in Eq. (4.12) yield

Ãi = D̃1/3 Ai(�)

D1/3(�)
, �̃+

log
2

D̃

12
= �+

log
2

D(�)

12
. (4.13)

By expressing � from the second equation and substituting into the first one, we obtain

Ãi = D̃1/3↵i

 
�̃+

log
2

D̃

12

!
, (4.14)

where the functions ↵i(�̃) are given implicitly by the equations

↵i =
Ai(�)

D1/3(�)
, �̃ = �+

log
2

D(�)

12
. (4.15)

Numerical simulations show that the three functions ↵i(�̃) are identical up to a shift by i/3,
i.e., (omitting tildes)

↵i(�) = ↵

✓
�� i

3

◆
, i = 1, 2, 3, (4.16)

with the periodic function ↵(�) = ↵(�+ 1) presented in Fig. 4b. The property (4.16) can be
understood as a result of the symmetry (4.5), which yields Ai 7! Ai+1

and � 7! � � 1/3 for
stationary solutions (4.9).

Expressions (4.14) and (4.16) determine the period-3 asymptotic conditions (2.11) for the
inviscid stationary solution Un(�) with a given dissipation rate D as

U
3n+i ! aik

�1/3
3n+i ,

ai(�, D) = �iD
1/3↵

✓
�� i

3
+

log
2

D

12

◆
, i = 1, 2, 3, n ! 1,

(4.17)

where we also took into account the period-3 sign changes allowed by the symmetry (2.8).
Conditions (4.17) are universal, i.e., valid for arbitrary boundary conditions, as we confirmed
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Universal form of the period-3 solution

Model symmetry:

Scaling of period-3 solution and energy dissipation rate:

while the term 2⌫⌦ describes the viscous energy dissipation. A similar balance law holds for
the helicity invariant introduced as H =

P
(�1)nknu2

n, see e.g. [3].
The following three transformations

un 7! 2un+1

, ⌫ 7! 22⌫; (2.6)

un 7! cun, ⌫ 7! c⌫, t 7! t/c; (2.7)

un 7! �nun, �n = ±1, �n�n+1

�n+2

= 1, (2.8)

are the symmetries of system (2.2). Also, the system is invariant under time translations
t 7! t + t

0

. Note that the shift n 7! n + 1 implies the scaling kn 7! kn+1

= 2kn in Fourier
space. Therefore, Eqs. (2.6) and (2.7) are related to the scaling of space-time. The signs �n in
Eq. (2.8) are periodic with �n = �n+3

and can be associated with phase factors in the Fourier
transform induced by physical space translations, see e.g. [3].

Stationary solutions of the inviscid model (⌫ = 0) were described in [4]. The equilibrium
conditions for Eqs. (2.2), after dividing by kn+1

, take the form

un+2

un+1

=
1

4
un+1

un�1

+
1

8
un�1

un�2

, n = 1, 2, . . . . (2.9)

If un 6= 0 for all n � 1, then Eqs. (2.9) define recursively the values of all shell speeds un,
n � 3, for given u�1

, u
0

, u
1

, u
2

. Equations (2.9) after multiplication by 2u�1

n�1

u�1

n+1

yield the
recurrent relation for velocity ratios

cn+2

=
1

2
+

1

2cn+1

, cn =
2un

un�3

, (2.10)

which possesses a single attracting fixed-point cn = 1 as n ! 1. This implies that u
3n+i

is asymptotically proportional to 2�n for each i = 1, 2, 3. Thus, with an increase of n, the
stationary solutions have the period-3 asymptotic form

u
3n+i ! aik

�1/3
3n+i , i = 1, 2, 3, (2.11)

with constant real quantities a
1

, a
2

, a
3

.
Note that the relation (2.11) implies the power law

un ⇠ k�1/3
n , (2.12)

which can be associated with the Kolmogorov scaling law of developed turbulence mentioned
above, as well as with the shock wave solutions in continuous models [29].

3 Viscous stationary solutions

For a positive viscosity, ⌫ > 0, and constant boundary conditions (2.3), numerical simulations
show that the shell model (2.2) possesses a fixed-point attractor, Fig. 1. In this case, the
equilibrium conditions become

un+2

un+1

=
1

4
un+1

un�1

+
1

8
un�1

un�2

� 1

2
⌫knun, n = 1, 2, . . . , (3.1)
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inviscid limit limν→+0 u
[ν]
n for stationary solutions does not exist in the usual sense,

while one can define an infinite number of inviscid stationary solutions

Un(χ) = lim
N→∞

u[νN ]
n , νN = 2−4(χ+N),(4.9)

obtained for specific viscosity subsequences νN → 0 depending on the parameter χ.
These solutions satisfy the condition

U3n+i(χ) → Ai(χ)k
−1/3
3n+i , i = 1, 2, 3, n → ∞,(4.10)

where the coefficients Ai(χ) are determined in Eq. (4.7) by the viscous mechanism for
specific boundary conditions. Since the values χ and χ + k with any integer k yield
the same inviscid solutions, the parameter χ should be considered modulo 1.

Substituting expression (4.10) into Eq. (2.5), we find

D(χ) = lim
n→∞

Πn = 3A1(χ)A2(χ)A3(χ)(4.11)

for the energy flux in the inertial interval. This value is equal to the injected energy
flux Π0 because the viscous dissipation acts only at infinitesimal viscous scales (infinite
shell numbers n). Since dE/dt = 0 for the stationary solution in Eq. (2.4), we find
that the valueD(χ) represents the total energy dissipation rate of the inviscid solution
Un(χ). This phenomenon of finite dissipation in the inviscid limit is known as the
dissipation anomaly [?].

We described the vanishing viscosity limit of stationary solutions under fixed
boundary conditions, which were taken in the numerical simulations as u−1 = u0 =
0.7. Using the symmetry (2.7) with an arbitrary coefficient c > 0, we see that
Ũn = cUn(χ) is the inviscid solution obtained in the vanishing viscosity limit ν̃N =
cνN = c2−4(χ+N) → 0 for the boundary conditions cu−1 and cu0. For this solution,
conditions (4.10) are given by the values

Ai #→ cAi, D #→ c3D.
Taking c = 24(χ−χ̃), one writes ν̃N = 2−4(χ̃+N) and the obtained relations can be

summarized as

D̃1/3

D1/3(χ)
=

Ãi

Ai(χ)
=

2−4χ̃

2−4χ
, i = 1, 2, 3.(4.12)

The two equalities in Eq. (4.12) yield

Ãi = D̃1/3 Ai(χ)

D1/3(χ)
, χ̃+

log2 D̃

12
= χ+

log2 D(χ)

12
.(4.13)

By expressing χ from the second equation and substituting into the first one, we
obtain

Ãi = D̃1/3αi

(

χ̃+
log2 D̃

12

)

,(4.14)

where the functions αi(χ̃) are given implicitly by the equations

αi =
Ai(χ)

D1/3(χ)
, χ̃ = χ+

log2 D(χ)

12
.(4.15)
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depending on the parameter � for boundary conditions of Fig. 1. b) The function ↵(�)
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The order of the limits in Eq. (4.7) is important. It describes the period-3 stationary solution
in the inertial interval 1 ⌧ m ⌧ nK , where nK = 3(� + N) ! 1 with vanishing viscosity
⌫N ! 0. By inspection of Eq. (4.7), one can check that the relations
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The obtained results show that the period-3 asymptotic form (2.11) depends on the pa-
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Numerical 
simulations:

for the energy flux in the inertial interval. This value is equal to the injected energy flux ⇧
0

because the viscous dissipation acts only at infinitesimal viscous scales (infinite shell numbers
n). Since dE/dt = 0 for the stationary solution in Eq. (2.4), we find that the value D(�)
represents the total energy dissipation rate of the inviscid solution Un(�). This phenomenon
of finite dissipation in the inviscid limit is known as the dissipation anomaly [12].

We described the vanishing viscosity limit of stationary solutions under fixed boundary
conditions, which were taken in the numerical simulations as u�1

= u
0

= 0.7. Using the
symmetry (2.7) with an arbitrary coe�cient c > 0, we see that Ũn = cUn(�) is the inviscid
solution obtained in the vanishing viscosity limit ⌫̃N = c⌫N = c2�4(�+N) ! 0 for the boundary
conditions cu�1

and cu
0

. For this solution, conditions (4.10) are given by the values Ãi =
cAi(�) and the energy dissipation rate (4.11) becomes D̃ = c3D(�). Taking c = 24(���̃), one
writes ⌫̃N = 2�4(�̃+N) and the obtained relations can be summarized as

D̃1/3

D1/3(�)
=

Ãi

Ai(�)
=

2�4�̃

2�4�
, i = 1, 2, 3. (4.12)

The two equalities in Eq. (4.12) yield

Ãi = D̃1/3 Ai(�)

D1/3(�)
, �̃+

log
2

D̃

12
= �+

log
2

D(�)

12
. (4.13)

By expressing � from the second equation and substituting into the first one, we obtain

Ãi = D̃1/3↵i

 
�̃+

log
2

D̃

12

!
, (4.14)

where the functions ↵i(�̃) are given implicitly by the equations

↵i =
Ai(�)

D1/3(�)
, �̃ = �+

log
2

D(�)

12
. (4.15)

Numerical simulations show that the three functions ↵i(�̃) are identical up to a shift by i/3,
i.e., (omitting tildes)

↵i(�) = ↵

✓
�� i

3

◆
, i = 1, 2, 3, (4.16)

with the periodic function ↵(�) = ↵(�+ 1) presented in Fig. 4b. The property (4.16) can be
understood as a result of the symmetry (4.5), which yields Ai 7! Ai+1

and � 7! � � 1/3 for
stationary solutions (4.9).

Expressions (4.14) and (4.16) determine the period-3 asymptotic conditions (2.11) for the
inviscid stationary solution Un(�) with a given dissipation rate D as

U
3n+i ! aik

�1/3
3n+i ,

ai(�, D) = �iD
1/3↵

✓
�� i

3
+

log
2

D

12

◆
, i = 1, 2, 3, n ! 1,

(4.17)

where we also took into account the period-3 sign changes allowed by the symmetry (2.8).
Conditions (4.17) are universal, i.e., valid for arbitrary boundary conditions, as we confirmed
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(complies with the model symmetry)

for the energy flux in the inertial interval. This value is equal to the injected energy flux ⇧
0

because the viscous dissipation acts only at infinitesimal viscous scales (infinite shell numbers
n). Since dE/dt = 0 for the stationary solution in Eq. (2.4), we find that the value D(�)
represents the total energy dissipation rate of the inviscid solution Un(�). This phenomenon
of finite dissipation in the inviscid limit is known as the dissipation anomaly [12].

We described the vanishing viscosity limit of stationary solutions under fixed boundary
conditions, which were taken in the numerical simulations as u�1

= u
0

= 0.7. Using the
symmetry (2.7) with an arbitrary coe�cient c > 0, we see that Ũn = cUn(�) is the inviscid
solution obtained in the vanishing viscosity limit ⌫̃N = c⌫N = c2�4(�+N) ! 0 for the boundary
conditions cu�1

and cu
0

. For this solution, conditions (4.10) are given by the values Ãi =
cAi(�) and the energy dissipation rate (4.11) becomes D̃ = c3D(�). Taking c = 24(���̃), one
writes ⌫̃N = 2�4(�̃+N) and the obtained relations can be summarized as

D̃1/3

D1/3(�)
=

Ãi

Ai(�)
=

2�4�̃

2�4�
, i = 1, 2, 3. (4.12)

The two equalities in Eq. (4.12) yield

Ãi = D̃1/3 Ai(�)

D1/3(�)
, �̃+

log
2

D̃

12
= �+

log
2

D(�)

12
. (4.13)

By expressing � from the second equation and substituting into the first one, we obtain

Ãi = D̃1/3↵i

 
�̃+

log
2

D̃

12

!
, (4.14)

where the functions ↵i(�̃) are given implicitly by the equations

↵i =
Ai(�)

D1/3(�)
, �̃ = �+

log
2

D(�)

12
. (4.15)

Numerical simulations show that the three functions ↵i(�̃) are identical up to a shift by i/3,
i.e., (omitting tildes)

↵i(�) = ↵

✓
�� i

3

◆
, i = 1, 2, 3, (4.16)

with the periodic function ↵(�) = ↵(�+ 1) presented in Fig. 4b. The property (4.16) can be
understood as a result of the symmetry (4.5), which yields Ai 7! Ai+1

and � 7! � � 1/3 for
stationary solutions (4.9).

Expressions (4.14) and (4.16) determine the period-3 asymptotic conditions (2.11) for the
inviscid stationary solution Un(�) with a given dissipation rate D as

U
3n+i ! aik

�1/3
3n+i ,

ai(�, D) = �iD
1/3↵

✓
�� i

3
+

log
2

D

12

◆
, i = 1, 2, 3, n ! 1,

(4.17)

where we also took into account the period-3 sign changes allowed by the symmetry (2.8).
Conditions (4.17) are universal, i.e., valid for arbitrary boundary conditions, as we confirmed
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Universal  
asymptotic:

Energy flux (dissipation rate):
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Figure 4: a) Functions Ai(�) determining the period-3 stationary state in the inertial interval
depending on the parameter � for boundary conditions of Fig. 1. b) The function ↵(�)
determining the universal period-3 stationary state (4.17) in the inertial interval. Squares

(i = 1), circles (i = 2) and diamonds (i = 3) represent the values of ↵ = D�1/3k
1/3
3n+i|u3n+i|

for n = 4 versus �� 1

3

+ log2 D
12

obtained in numerical tests with random boundary conditions
and random |�| < 1/2.

The order of the limits in Eq. (4.7) is important. It describes the period-3 stationary solution
in the inertial interval 1 ⌧ m ⌧ nK , where nK = 3(� + N) ! 1 with vanishing viscosity
⌫N ! 0. By inspection of Eq. (4.7), one can check that the relations

Ai(�+ k) = Ai(�), i = 1, 2, 3, k 2 Z, (4.8)

are valid for any integer k.
The obtained results show that the period-3 asymptotic form (2.11) depends on the pa-

rameter � of the inviscid limit. This leads to the important conclusion that the inviscid limit
lim⌫!+0

u
[⌫]
n for stationary solutions does not exist in the usual sense, while one can define an

infinite number of inviscid stationary solutions

Un(�) = lim
N!1

u[⌫N ]

n , ⌫N = 2�4(�+N), (4.9)

obtained for specific viscosity subsequences ⌫N ! 0 depending on the parameter �. These
solutions satisfy the condition

U
3n+i(�) ! Ai(�)k

�1/3
3n+i , i = 1, 2, 3, n ! 1, (4.10)

where the coe�cients Ai(�) are determined in Eq. (4.7) by the viscous mechanism for specific
boundary conditions. Since the values � and �+ k with any integer k yield the same inviscid
solutions, the parameter � should be considered modulo 1.

Substituting expression (4.10) into Eq. (2.5), we find

D(�) = lim
n!1

⇧n = 3A
1

(�)A
2

(�)A
3

(�) (4.11)
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Non-stationary solutions



Inviscid limit: definitions
Inviscid limit: 

Relaxation time for period-3 solution (scaling symmetry): 

numerically in Fig. 4b for a number of tests with random values of u�1

, u
0

and �. In these
tests, we took N = 6 corresponding to the inertial interval extended to nK = 18, and plotted
↵ = D�1/3k

1/3
3n+i|u3n+i| versus �� i/3 + (log

2

D)/12 for i = 1, 2, 3 and n = 4.
We conclude that the viscous mechanism has the global e↵ect on stationary solutions,

by determining the periodic state in the inertial interval through the condition (4.17). This
e↵ect persists in the limit of vanishing viscosity and depends on the way this limit it taken
governed by the parameter �. This implies the nonuniqueness of the vanishing viscosity limit,
generating a one-parameter family of inviscid solutions, where each solution is defined by a
specific viscosity sequence, ⌫N = 2�4(�+N) ! 0 with fixed � (mod 1).

5 Spontaneous stochasticity in the inviscid limit

The boundary condition (4.17) was obtained by considering the limit (4.4), where the limiting
expression represents the symmetry transformation (4.5) applied 3N times to a stationary
solution. For time-dependent solutions, this transformation yields t 7! 22N t. This means that
the time scale increases with N and, hence, the relaxation time of the time-dependent solution
to a stationary one vanishes in the limit N ! 1. Therefore, the asymptotic state (4.17) must
be attained instantaneously in the limit of vanishing viscosity ⌫N = 2�4(�+N) ! 0.

In order to formalize this condition, let us consider a time-dependent solution u
[⌫]
n (t)

defined for viscosity ⌫ > 0 and fixed initial and boundary conditions. Given the parameter
� (mod 1), we consider the vanishing viscosity limit as

un(t,�) = lim
N!1

u[⌫N ]

n (t), ⌫N = 2�4(�+N). (5.1)

Then, the asymptotic condition (4.17) should hold at each time (we will see later that this
excludes the time of blowup) as

u
3n+i(t,�) ! ai(�, D(t))k�1/3

3n+i , i = 1, 2, 3, n ! 1, (5.2)

with ai(�, D) given in Eq. (4.17) and the dissipation rate D(t) depending on time. Existence
of the limit (5.1) is confirmed numerically and the condition (5.2) is verified in Fig. 5.

Condition (5.2) implies that the vanishing viscosity limit, ⌫ ! +0, of time-dependent
solutions does not exist in the usual sense. However, this limit can be defined for specific
sequences of vanishing viscosities, ⌫N ! 0. This generates an infinite number of the inviscid
solutions parameterized by � (mod 1). One can interpret such solutions in di↵erent ways.
Since the viscosity ⌫ has a specific physical value, which can be very small, the parameter � =
�1

4

log
2

⌫ (mod 1) is determined uniquely. Hence, one can use this parameter for considering
an appropriate limiting sequence ⌫N = 2�4(�+N) ! 0. Alternatively, an approximate solution
un(t) for small n can be found by using the viscosity ⌫N with a relatively small N keeping
the same value of �, i.e., one can obtain a good approximation for shell velocities at large
scales without resolving all small scales of the model. This is analogous to the approach in
numerical fluid dynamics known as the Large Eddy Simulation, which resolves some but not
all of the turbulence scales.

A di↵erent interpretation is obtained by considering the viscosity to be small but oth-
erwise undetermined (unknown). In this case, the vanishing viscosity limit may be defined
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inviscid limit limν→+0 u
[ν]
n for stationary solutions does not exist in the usual sense,

while one can define an infinite number of inviscid stationary solutions

Un(χ) = lim
N→∞

u[νN ]
n , νN = 2−4(χ+N),(4.9)

obtained for specific viscosity subsequences νN → 0 depending on the parameter χ.
These solutions satisfy the condition

U3n+i(χ) → Ai(χ)k
−1/3
3n+i , i = 1, 2, 3, n → ∞,(4.10)

where the coefficients Ai(χ) are determined in Eq. (4.7) by the viscous mechanism for
specific boundary conditions. Since the values χ and χ + k with any integer k yield
the same inviscid solutions, the parameter χ should be considered modulo 1.

Substituting expression (4.10) into Eq. (2.5), we find

D(χ) = lim
n→∞

Πn = 3A1(χ)A2(χ)A3(χ)(4.11)

for the energy flux in the inertial interval. This value is equal to the injected energy
flux Π0 because the viscous dissipation acts only at infinitesimal viscous scales (infinite
shell numbers n). Since dE/dt = 0 for the stationary solution in Eq. (2.4), we find
that the valueD(χ) represents the total energy dissipation rate of the inviscid solution
Un(χ). This phenomenon of finite dissipation in the inviscid limit is known as the
dissipation anomaly [?].

We described the vanishing viscosity limit of stationary solutions under fixed
boundary conditions, which were taken in the numerical simulations as u−1 = u0 =
0.7. Using the symmetry (2.7) with an arbitrary coefficient c > 0, we see that
Ũn = cUn(χ) is the inviscid solution obtained in the vanishing viscosity limit ν̃N =
cνN = c2−4(χ+N) → 0 for the boundary conditions cu−1 and cu0. For this solution,
conditions (4.10) are given by the values

Ai #→ cAi, D #→ c3D.

trel ∝ 2−2N → 0

Taking c = 24(χ−χ̃), one writes ν̃N = 2−4(χ̃+N) and the obtained relations can be
summarized as

D̃1/3

D1/3(χ)
=

Ãi

Ai(χ)
=

2−4χ̃

2−4χ
, i = 1, 2, 3.(4.12)

The two equalities in Eq. (4.12) yield

Ai = D1/3 Ai(χ)

D1/3(χ)
, χ̃+

log2
12

= χ+
log2 D(χ)

12
.(4.13)

By expressing χ from the second equation and substituting into the first one, we
obtain

Ai = D1/3αi

(

χ+
log2 D

12

)

,(4.14)

where the functions αi(χ̃) are given implicitly by the equations

αi =
Ai(χ)

D1/3(χ)
, χ̃ = χ+

log2 D(χ)

12
.(4.15)

Instantaneous relaxation in inviscid limit!

Inviscid limit for time-dependent solutions: 

numerically in Fig. 4b for a number of tests with random values of u�1

, u
0

and �. In these
tests, we took N = 6 corresponding to the inertial interval extended to nK = 18, and plotted
↵ = D�1/3k

1/3
3n+i|u3n+i| versus �� i/3 + (log

2

D)/12 for i = 1, 2, 3 and n = 4.
We conclude that the viscous mechanism has the global e↵ect on stationary solutions,

by determining the periodic state in the inertial interval through the condition (4.17). This
e↵ect persists in the limit of vanishing viscosity and depends on the way this limit it taken
governed by the parameter �. This implies the nonuniqueness of the vanishing viscosity limit,
generating a one-parameter family of inviscid solutions, where each solution is defined by a
specific viscosity sequence, ⌫N = 2�4(�+N) ! 0 with fixed � (mod 1).

5 Spontaneous stochasticity in the inviscid limit

The boundary condition (4.17) was obtained by considering the limit (4.4), where the limiting
expression represents the symmetry transformation (4.5) applied 3N times to a stationary
solution. For time-dependent solutions, this transformation yields t 7! 22N t. This means that
the time scale increases with N and, hence, the relaxation time of the time-dependent solution
to a stationary one vanishes in the limit N ! 1. Therefore, the asymptotic state (4.17) must
be attained instantaneously in the limit of vanishing viscosity ⌫N = 2�4(�+N) ! 0.

In order to formalize this condition, let us consider a time-dependent solution u
[⌫]
n (t)

defined for viscosity ⌫ > 0 and fixed initial and boundary conditions. Given the parameter
� (mod 1), we consider the vanishing viscosity limit as

un(t,�) = lim
N!1

u[⌫N ]

n (t), ⌫N = 2�4(�+N). (5.1)

Then, the asymptotic condition (4.17) should hold at each time (we will see later that this
excludes the time of blowup) as

u
3n+i(t,�) ! ai(�, D(t))k�1/3

3n+i , i = 1, 2, 3, n ! 1, (5.2)

with ai(�, D) given in Eq. (4.17) and the dissipation rate D(t) depending on time. Existence
of the limit (5.1) is confirmed numerically and the condition (5.2) is verified in Fig. 5.

Condition (5.2) implies that the vanishing viscosity limit, ⌫ ! +0, of time-dependent
solutions does not exist in the usual sense. However, this limit can be defined for specific
sequences of vanishing viscosities, ⌫N ! 0. This generates an infinite number of the inviscid
solutions parameterized by � (mod 1). One can interpret such solutions in di↵erent ways.
Since the viscosity ⌫ has a specific physical value, which can be very small, the parameter � =
�1

4

log
2

⌫ (mod 1) is determined uniquely. Hence, one can use this parameter for considering
an appropriate limiting sequence ⌫N = 2�4(�+N) ! 0. Alternatively, an approximate solution
un(t) for small n can be found by using the viscosity ⌫N with a relatively small N keeping
the same value of �, i.e., one can obtain a good approximation for shell velocities at large
scales without resolving all small scales of the model. This is analogous to the approach in
numerical fluid dynamics known as the Large Eddy Simulation, which resolves some but not
all of the turbulence scales.

A di↵erent interpretation is obtained by considering the viscosity to be small but oth-
erwise undetermined (unknown). In this case, the vanishing viscosity limit may be defined
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numerically in Fig. 4b for a number of tests with random values of u�1

, u
0

and �. In these
tests, we took N = 6 corresponding to the inertial interval extended to nK = 18, and plotted
↵ = D�1/3k

1/3
3n+i|u3n+i| versus �� i/3 + (log

2

D)/12 for i = 1, 2, 3 and n = 4.
We conclude that the viscous mechanism has the global e↵ect on stationary solutions,

by determining the periodic state in the inertial interval through the condition (4.17). This
e↵ect persists in the limit of vanishing viscosity and depends on the way this limit it taken
governed by the parameter �. This implies the nonuniqueness of the vanishing viscosity limit,
generating a one-parameter family of inviscid solutions, where each solution is defined by a
specific viscosity sequence, ⌫N = 2�4(�+N) ! 0 with fixed � (mod 1).

5 Spontaneous stochasticity in the inviscid limit

The boundary condition (4.17) was obtained by considering the limit (4.4), where the limiting
expression represents the symmetry transformation (4.5) applied 3N times to a stationary
solution. For time-dependent solutions, this transformation yields t 7! 22N t. This means that
the time scale increases with N and, hence, the relaxation time of the time-dependent solution
to a stationary one vanishes in the limit N ! 1. Therefore, the asymptotic state (4.17) must
be attained instantaneously in the limit of vanishing viscosity ⌫N = 2�4(�+N) ! 0.

In order to formalize this condition, let us consider a time-dependent solution u
[⌫]
n (t)

defined for viscosity ⌫ > 0 and fixed initial and boundary conditions. Given the parameter
� (mod 1), we consider the vanishing viscosity limit as

un(t,�) = lim
N!1

u[⌫N ]

n (t), ⌫N = 2�4(�+N). (5.1)

Then, the asymptotic condition (4.17) should hold at each time (we will see later that this
excludes the time of blowup) as

u
3n+i(t,�) ! ai(�, D(t))k�1/3

3n+i , i = 1, 2, 3, n ! 1, (5.2)

with ai(�, D) given in Eq. (4.17) and the dissipation rate D(t) depending on time. Existence
of the limit (5.1) is confirmed numerically and the condition (5.2) is verified in Fig. 5.

Condition (5.2) implies that the vanishing viscosity limit, ⌫ ! +0, of time-dependent
solutions does not exist in the usual sense. However, this limit can be defined for specific
sequences of vanishing viscosities, ⌫N ! 0. This generates an infinite number of the inviscid
solutions parameterized by � (mod 1). One can interpret such solutions in di↵erent ways.
Since the viscosity ⌫ has a specific physical value, which can be very small, the parameter � =
�1

4

log
2

⌫ (mod 1) is determined uniquely. Hence, one can use this parameter for considering
an appropriate limiting sequence ⌫N = 2�4(�+N) ! 0. Alternatively, an approximate solution
un(t) for small n can be found by using the viscosity ⌫N with a relatively small N keeping
the same value of �, i.e., one can obtain a good approximation for shell velocities at large
scales without resolving all small scales of the model. This is analogous to the approach in
numerical fluid dynamics known as the Large Eddy Simulation, which resolves some but not
all of the turbulence scales.

A di↵erent interpretation is obtained by considering the viscosity to be small but oth-
erwise undetermined (unknown). In this case, the vanishing viscosity limit may be defined
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Ultraviolet limit: 

numerically in Fig. 4b for a number of tests with random values of u�1

, u
0

and �. In these
tests, we took N = 6 corresponding to the inertial interval extended to nK = 18, and plotted
↵ = D�1/3k

1/3
3n+i|u3n+i| versus �� i/3 + (log

2

D)/12 for i = 1, 2, 3 and n = 4.
We conclude that the viscous mechanism has the global e↵ect on stationary solutions,

by determining the periodic state in the inertial interval through the condition (4.17). This
e↵ect persists in the limit of vanishing viscosity and depends on the way this limit it taken
governed by the parameter �. This implies the nonuniqueness of the vanishing viscosity limit,
generating a one-parameter family of inviscid solutions, where each solution is defined by a
specific viscosity sequence, ⌫N = 2�4(�+N) ! 0 with fixed � (mod 1).

5 Spontaneous stochasticity in the inviscid limit

The boundary condition (4.17) was obtained by considering the limit (4.4), where the limiting
expression represents the symmetry transformation (4.5) applied 3N times to a stationary
solution. For time-dependent solutions, this transformation yields t 7! 22N t. This means that
the time scale increases with N and, hence, the relaxation time of the time-dependent solution
to a stationary one vanishes in the limit N ! 1. Therefore, the asymptotic state (4.17) must
be attained instantaneously in the limit of vanishing viscosity ⌫N = 2�4(�+N) ! 0.

In order to formalize this condition, let us consider a time-dependent solution u
[⌫]
n (t)

defined for viscosity ⌫ > 0 and fixed initial and boundary conditions. Given the parameter
� (mod 1), we consider the vanishing viscosity limit as

un(t,�) = lim
N!1

u[⌫N ]

n (t), ⌫N = 2�4(�+N). (5.1)

Then, the asymptotic condition (4.17) should hold at each time (we will see later that this
excludes the time of blowup) as

u
3n+i(t,�) ! ai(�, D(t))k�1/3

3n+i , i = 1, 2, 3, n ! 1, (5.2)

with ai(�, D) given in Eq. (4.17) and the dissipation rate D(t) depending on time. Existence
of the limit (5.1) is confirmed numerically and the condition (5.2) is verified in Fig. 5.

Condition (5.2) implies that the vanishing viscosity limit, ⌫ ! +0, of time-dependent
solutions does not exist in the usual sense. However, this limit can be defined for specific
sequences of vanishing viscosities, ⌫N ! 0. This generates an infinite number of the inviscid
solutions parameterized by � (mod 1). One can interpret such solutions in di↵erent ways.
Since the viscosity ⌫ has a specific physical value, which can be very small, the parameter � =
�1

4

log
2

⌫ (mod 1) is determined uniquely. Hence, one can use this parameter for considering
an appropriate limiting sequence ⌫N = 2�4(�+N) ! 0. Alternatively, an approximate solution
un(t) for small n can be found by using the viscosity ⌫N with a relatively small N keeping
the same value of �, i.e., one can obtain a good approximation for shell velocities at large
scales without resolving all small scales of the model. This is analogous to the approach in
numerical fluid dynamics known as the Large Eddy Simulation, which resolves some but not
all of the turbulence scales.

A di↵erent interpretation is obtained by considering the viscosity to be small but oth-
erwise undetermined (unknown). In this case, the vanishing viscosity limit may be defined
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Figure 5: a) Solutions for the shell u
3

(t) with zero initial conditions and boundary conditions
u�1

= u
0

= 0.7 corresponding to di↵erent values of the viscosity ⌫N = 2�4(�+N). The limiting
inviscid solution depends on the parameter � after the blowup time, t > tb ⇡ 2.35. b)
Dissipation rate D(t) as a function of time for the solution with � = 0 and N = 6. c) Values
of the coe�cients ai determining the solution (5.2) in the inertial interval. These coe�cient
coincide with their prediction based on the value of the dissipation rate (bold light-green
lines) given by Eq. (4.17).
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Numerical simulations

Ultraviolet  
asymptotic: 
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Figure 5: a) Solutions for the shell u
3

(t) with zero initial conditions and boundary conditions
u�1

= u
0

= 0.7 corresponding to di↵erent values of the viscosity ⌫N = 2�4(�+N). The limiting
inviscid solution depends on the parameter � after the blowup time, t > tb ⇡ 2.35. b)
Dissipation rate D(t) as a function of time for the solution with � = 0 and N = 6. c) Values
of the coe�cients ai determining the solution (5.2) in the inertial interval. These coe�cient
coincide with their prediction based on the value of the dissipation rate (bold light-green
lines) given by Eq. (4.17).
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speeds un(t) for n = 1, 2, . . . converging to their stationary values; the speeds un decrease
(nonmonotonously) with increasing n.

which di↵er from Eq. (2.9) by an additional viscous term. For nonzero shell speeds, Eq. (3.1)
determines the equilibrium state recursively if the four initial speeds u�1

, u
0

, u
1

, u
2

are given.
The speeds u�1

, u
0

are determined by the boundary conditions, while the speeds u
1

, u
2

depend
on the viscosity, as we will see below.

For small viscosity ⌫, the viscous term in Eq. (3.1) is small and the solution is determined
approximately by the inviscid model (2.9) leading to the properties (2.11). However, for any
finite ⌫ > 0, the viscous term becomes important for large shell numbers (small scales), when
⌫kn ⇠ un. Using this estimate with the scaling law (2.12), we introduce the Kolmogorov
wavenumber as kK ⇠ ⌫�3/4. The corresponding shell number

nK = log
2

kK = �3

4
log

2

⌫ (3.2)

separates the region n ⌧ nK of inviscid dynamics from the viscous range n & nK , Fig. 2.
The inviscid region contains the forcing (boundary) range at n ⇠ 1 and the inertial interval
1 ⌧ n ⌧ nK .

In the viscous range, one expects fast decay of velocities un with increasing shell number
n, due to the large factor k2

n of the viscous term in Eq. (2.2). In this case, the last two terms
in Eq. (3.1) are dominant, which yields

un�1

un�2

⇡ 4⌫knun. (3.3)

Writing this expression as a linear equation

log
2

|un| ⇡ log
2

|un�1

|+ log
2

|un�2

|� 2� n� log
2

⌫, (3.4)

one finds the general solution in the form

log
2

|un| ⇡ b�n + b̃�̃n + 5 + n+ log
2

⌫ (3.5)
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Simulation for zero initial and  
constant boundary conditions: 



Stochastic definition of limiting solution

with a random variable X,  
e.g., uniformly distributes  
in the interval [0, 1].  

Figure 6: Evolution of the shells (u
3

, u
4

) for the solution in vanishing viscosity limit for zero
initial conditions and boundary values u�1

= u
0

= 0.7. The curves show solutions for very
small viscosities ⌫ = 2�4(�+6) with � = 0, 0.04, . . . , 1. The inviscid solutions coincide for all
0  � < 1 before the blowup, t  tb, and define a surface for larger times, t > tb. The
right figure shows the amplified region near the blowup time tb ⇡ 2.35, when the spontaneous
stochasticity occurs.

by introducing a probability distribution for the viscous parameter � as follows. Let us fix
the boundary and initial conditions and consider � = X as a random variable uniformly
distributed in the interval 0  X  1 (a random value, when chosen, is used for all times
t > 0). Then the inviscid limit is defined as

Un(t) = lim
µ!+0

u[⌫]
n (t), ⌫ = µ2�4X . (5.3)

At each time, the solution u
[⌫]
n (t), n = 1, 2, . . ., represents a random variable (probability

measure) in the `2 space with the norm given by the square root of energy, and the limit
can be understood in a weak sense. Note that no choice of a special viscosity subsequence is
necessary in the limit (5.3), where all limiting solutions (5.1) are involved through the random
variable X. As a result, the inviscid solution Un(t) is given by a singular probability measure
supported on the one-parameter set of solutions (5.1).

Figure 6 shows the solution (5.3) computed numerically. One can see that the limiting
solution is deterministic until a certain time t  tb (with the blowup time tb as described in
the next section), and becomes stochastic for t > tb. This reveals the striking property of
the spontaneous stochasticity of the inviscid solution Un(t) obtained in the limit of vanishing
viscosity.

Figure 7 (thin solid line) shows the one-dimensional support of the singular probability
measure (5.3) for the shell speeds u

3

and u
4

computed numerically at t = 3. This support
represents a closed curve. It is remarkable that the probability measure depends on the
viscosity mechanism. Indeed, let us consider Eq. (2.2) with the hyperviscous term �⌫k�

nun,
where the usual viscosity corresponds to � = 2. The general case with � 6= 2 can be studied
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Figure 7: Shell speeds (u
3

, u
4

) at time t = 3 of the vanishing viscosity solutions. Di↵erent
viscosity mechanisms are considered given by the term �⌫k�

nun in Eq. (2.2) for � = 1.5, 2
and 2.5. The results are obtained numerically for zero initial conditions and boundary values
u�1

= u
0

= 0.7. The presented curves are determined by the viscosity spanning the interval
0 < ⌫  ⌫

0

with very small ⌫
0

, such that the viscous range starts around nK ⇡ 24. Inviscid
solutions can be represented as singular probability measures (supported on a curve for the
shells u

3

and u
4

), which depend on the infinitesimal viscosity mechanism.

in a similar way, where one should use a di↵erent scaling of viscosity depending on �. The
inviscid solution in the vanishing viscosity limit can be defined as a probability measure,
similarly to Eq. (5.3). This measure was computed numerically for � = 1.5 and 2.5, see Fig. 7
(thick solid and dashed lines). The simulations confirm that the measure is singular with
a one-dimensional support, which is di↵erent for di↵erent �, i.e., the inviscid limit depends
strongly on the viscosity mechanism.

6 Blowup

Let us consider the Cauchy problem for the system (2.2) with arbitrary boundary conditions
(2.3) and initial conditions at t = 0 with finite enstrophy ⌦(0) =

P
k2

nu
2

n < 1. In the viscous
case, ⌫ > 0, there exists a unique solution [2, 7, 8]. For the inviscid system, ⌫ = 0, the solution
exists in a weak sense and it is unique as soon as the enstrophy is finite. The enstrophy may
explode (blowup) in finite time tb > 0 such that ⌦ ! 1 as t ! t�b . Before the blowup,
0  t < tb, the viscous solutions converge to the inviscid one in the vanishing viscosity limit
⌫ ! +0 [2, 7, 8]. As we have shown in Section 5, the limit ⌫ ! +0 does not exist and the
inviscid solution defined for vanishing viscosity subsequences is not unique for larger times.

The blowup structure at times t < tb was analyzed in [10] (see also [26, 27]) showing that,
at large shell numbers n, the solution has the self-similar asymptotic form

un(t) ! �nck
�y
n U(c⇠) with ⇠ = k1�y

n (t� tb)  0. (6.1)

Here the scaling factor c > 0 and the signs �n = ±1 describe the symmetries (2.7) and (2.8).
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Spontaneous stochasticity



Onset of spontaneous stochasticity: 
before and after blowup



Left asymptotic of blowup
Universal self-similar asymptotic (Dombre&Gilson, 1998)
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Figure 8: a) Magnified version of Fig. 1 near the blowup time tb ⇡ 2.35 represented by the ver-
tical red line. b) Before the blowup, t < tb, the self-similar inviscid dynamics (6.1) corresponds
to the asymptotic traveling wave (6.5) in renormalized variables vn(⌧) given by Eq. (6.4).
Shown are the variables vn, n = �1, 0, . . . , 30, at logarithmic times ⌧ = 0, 3⌧

0

, . . . , 21⌧
0

for
the inviscid solution with zero initial conditions and boundary values u�1

= u
0

= 0.7. The
symmetry parameters in Eq. (6.4) are c = 0.7 and �n = +1.

The exponent y ⇡ 0.281 is universal (independent of boundary and initial conditions). The
function U(⇠) is also universal and defined for ⇠  0 corresponding to t  tb, with U(0) = 1.
The convergence in Eq. (6.1) is pointwise for large n and arbitrary fixed ⇠, i.e., for

t = tb + ⇠ky�1

n ! t�b , n ! 1. (6.2)

In our example in Fig. 8a, the blowup time of the inviscid system is tb = 2.35 and one
can recognize the self-similar behavior (6.1) for t < tb. At the blowup time, one has ⇠ = 0 in
Eq. (6.1), which implies the asymptotic power law

un(tb) ! �nck
�y
n as n ! 1. (6.3)

Note that, since y < 1/3, the energy flux (2.5) tends to infinity for large shell numbers at the
blowup time tb, while the energy is finite, E(tb) < 1, and the enstrophy is infinite, ⌦(tb) = 1,
see also Fig. 5b.

Let us introduce the new shell variables as

un = �nck
�y
n vn, t = tb � 2�⌧/c. (6.4)

Then, following [10, 26], expression (6.1) can be written in the form

vn(⌧) ! V

✓
n� ⌧

⌧
0

◆
, (6.5)

where the function V (⌘), ⌘ 2 R, and constant ⌧
0

are defined as

V (⌘) = U (�2⌧0⌘) , ⌧
0

= 1� y ⇡ 0.719. (6.6)
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can recognize the self-similar behavior (6.1) for t < tb. At the blowup time, one has ⇠ = 0 in
Eq. (6.1), which implies the asymptotic power law

un(tb) ! �nck
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n as n ! 1. (6.3)

Note that, since y < 1/3, the energy flux (2.5) tends to infinity for large shell numbers at the
blowup time tb, while the energy is finite, E(tb) < 1, and the enstrophy is infinite, ⌦(tb) = 1,
see also Fig. 5b.

Let us introduce the new shell variables as
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Then, following [10, 26], expression (6.1) can be written in the form
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According to Eqs. (6.2) and (6.6), the convergence in Eq. (6.5) is understood in the limit

⌧ = ⌧
0

n+ const ! 1, n ! 1, (6.7)

i.e., pointwise for a constant ⌘ = n� ⌧/⌧
0

.
The function V (⌘) has the limits

lim
⌘!�1

V (⌘) = 1, lim
⌘!1

V (⌘) = 0, (6.8)

where the first condition follows from the property U(0) = 1. In the second condition, large
⌘ corresponds to the region of large shell numbers, where un decays faster than k�1

n due to
the finite enstrophy condition and, hence, vn ! 0 in Eq. (6.4).

Note that the limit ⌧ ! 1 for the logarithmic time ⌧ = � log
2

[c(tb � t)] corresponds to
t ! t�b . Hence, expression (6.5) describes the blowup as a traveling wave with the universal
stationary profile V (⌘) moving from smaller to larger shell numbers with constant speed ⌧�1

0

in logarithmic time ⌧ , see Fig. 8b. This implies periodicity of the rescaled shell speeds vn(⌧)
in Eq. (6.5), which attain the same values with the shift by one shell number after each period
⌧
0

.

7 Onset of spontaneous stochasticity after the blowup

After the blowup, t > tb, the inviscid solution is not unique, as we observed in numerical
simulations, Figs. 5a and 6b. We showed that this nonuniqueness is characterized by the
parameter � (mod 1) in Eq. (5.1), determining a specific form of the inviscid limit, ⌫N =
2�4(�+N) ! 0. At large times, the solutions un(t,�) converge to the stationary ones, as we
explained in the previous sections. In this section, we focus on the behavior just after the
blowup, i.e., in the limit t ! t+b , describing the onset of nonuniqueness and, thus, spontaneous
stochasticity.

Similarly to Eqs. (6.1)–(6.4), we introduce the functions wn(⌧̃ ,�) by changing the variables
as

un = �nck
�y
n wn, t = tb + 2�⌧̃/c, (7.1)

where c > 0 and the signs �n describe the symmetry transformations (2.7) and (2.8). The
second expression introduces a new logarithmic time variable ⌧̃ = � log

2

[c(t � tb)] after the
blowup, t > tb, with the right blowup limit, t ! t+b , corresponding to large ⌧̃ ! 1. An
arbitrary solution wn(⌧̃ ,�) can be represented as

wn(⌧̃ ,�) = Wn
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c, ⌧
1

=
4� 4y

1 + y
⇡ 2.245,

(7.2)

where ⌧
0

= 1 � y as in Eq. (6.6); the constant �c is induced by the change of viscosity
⌫N = 2�4(�+N) due to symmetry transformation (2.7) with c = 2�4�c . This representation
resembles Eq. (6.5), but takes into account the dependence on �. The reason for the choice
of the second arguments in Wn will be clear below.
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It is straightforward to check that the transformation

un 7! �n�1

�n2
�yun�1

, t� tb 7! 2y�1(t� tb), ⌫ 7! 2�(1+y)⌫ (7.3)

is the symmetry, i.e., it relates di↵erent solutions of Eq. (2.2). It is easy to see that the
asymptotic form (6.3) of the inviscid solution at the blowup point (t = tb and ⌫ = 0) does not
change under the transformation (7.3). For inviscid solutions un(t,�), the symmetry (7.3)
transforms the new variables (7.1) as

wn 7! wn�1

, ⌧̃ 7! ⌧̃ + ⌧
0

(7.4)

with ⌧
0

= 1� y. Also, the last relation in Eq. (7.3) yields the mapping
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0

=
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4
=
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1

(7.5)

for the parameter of the vanishing viscosity limit ⌫N = 2�4(�+N) ! 0 with ⌧
1

given by Eq. (7.2).
We see from Eqs. (7.4) and (7.5) that the arguments ⌘

1

= n � ⌧̃/⌧
0

and ⌘
2

= � � �c � ⌧̃/⌧
1

in Eq. (7.2) are chosen such that the functions Wn transform simply as

Wn(⌘1, ⌘1) 7! Wn�1

(⌘
1

, ⌘
2

), (7.6)

i.e., only with the change of shell number.
Recall that the asymptotic state (6.3) of the system at the blowup point tb is universal, i.e.,

it is independent of initial and boundary conditions up to the choice of the scaling parameter
c and signs �n. Hence, we can expect that similar universality holds after the blowup as well.
Thus, we conjecture (and confirm later numerically) that the functions in Eq. (7.2) have a
universal asymptotic form for large n. This asymptotic form should not be a↵ected by the
symmetry transformation (7.3), which leaves the asymptotic state (6.3) unchanged. Since
this transformation changes the shell number by one in the functions (7.6), their universal
asymptotic form, Wn(⌘1, ⌘2) ! W (⌘

1

, ⌘
2

), must be the independent of the shell number n.
Using Eq. (7.2), this yields the asymptotic expression of the form

wn(⌧̃ ,�) ! W
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Similarly to Eqs. (6.5) and (6.7), we understand the limit (7.7) pointwise for large n ! 1
with fixed ⌘

1

= n� ⌧̃/⌧
0

and ⌘
2

= �� �c � ⌧̃/⌧
1

.
Recall that the values of �, which di↵er by an integer number, correspond to the same

inviscid solution, see Section 5. Hence, the universal function W (⌘
1

, ⌘
2

) is periodic with
respect to the second variable as

W (⌘
1

, ⌘
2

) = W (⌘
1

, ⌘
2

+ 1). (7.8)

The power law (6.3), where tb corresponds to ⌧̃ ! 1, and the relations (7.1), (7.7), (7.8)
yield the left-side limiting value of the function W (⌘

1

, ⌘
2

) with respect to the first argument
as

lim
⌘1!�1

W (⌘
1

, ⌘
2

) = 1. (7.9)

16

Symmetry:

Symmetry for renormalized variables: 

It is straightforward to check that the transformation

un 7! �n�1

�n2
�yun�1

, t� tb 7! 2y�1(t� tb), ⌫ 7! 2�(1+y)⌫ (7.3)

is the symmetry, i.e., it relates di↵erent solutions of Eq. (2.2). It is easy to see that the
asymptotic form (6.3) of the inviscid solution at the blowup point (t = tb and ⌫ = 0) does not
change under the transformation (7.3). For inviscid solutions un(t,�), the symmetry (7.3)
transforms the new variables (7.1) as

wn 7! wn�1

, ⌧̃ 7! ⌧̃ + ⌧
0

(7.4)

with ⌧
0

= 1� y. Also, the last relation in Eq. (7.3) yields the mapping

� 7! �+ �
0

, �
0

=
1 + y

4
=

⌧
0

⌧
1

(7.5)

for the parameter of the vanishing viscosity limit ⌫N = 2�4(�+N) ! 0 with ⌧
1

given by Eq. (7.2).
We see from Eqs. (7.4) and (7.5) that the arguments ⌘

1

= n � ⌧̃/⌧
0

and ⌘
2

= � � �c � ⌧̃/⌧
1

in Eq. (7.2) are chosen such that the functions Wn transform simply as

Wn(⌘1, ⌘1) 7! Wn�1

(⌘
1

, ⌘
2

), (7.6)

i.e., only with the change of shell number.
Recall that the asymptotic state (6.3) of the system at the blowup point tb is universal, i.e.,

it is independent of initial and boundary conditions up to the choice of the scaling parameter
c and signs �n. Hence, we can expect that similar universality holds after the blowup as well.
Thus, we conjecture (and confirm later numerically) that the functions in Eq. (7.2) have a
universal asymptotic form for large n. This asymptotic form should not be a↵ected by the
symmetry transformation (7.3), which leaves the asymptotic state (6.3) unchanged. Since
this transformation changes the shell number by one in the functions (7.6), their universal
asymptotic form, Wn(⌘1, ⌘2) ! W (⌘

1

, ⌘
2

), must be the independent of the shell number n.
Using Eq. (7.2), this yields the asymptotic expression of the form

wn(⌧̃ ,�) ! W

✓
n� ⌧̃

⌧
0

,�� �c �
⌧̃

⌧
1

◆
. (7.7)

Similarly to Eqs. (6.5) and (6.7), we understand the limit (7.7) pointwise for large n ! 1
with fixed ⌘

1

= n� ⌧̃/⌧
0

and ⌘
2

= �� �c � ⌧̃/⌧
1

.
Recall that the values of �, which di↵er by an integer number, correspond to the same

inviscid solution, see Section 5. Hence, the universal function W (⌘
1

, ⌘
2

) is periodic with
respect to the second variable as

W (⌘
1

, ⌘
2

) = W (⌘
1

, ⌘
2

+ 1). (7.8)

The power law (6.3), where tb corresponds to ⌧̃ ! 1, and the relations (7.1), (7.7), (7.8)
yield the left-side limiting value of the function W (⌘

1

, ⌘
2

) with respect to the first argument
as

lim
⌘1!�1

W (⌘
1

, ⌘
2

) = 1. (7.9)

16

It is straightforward to check that the transformation

un 7! �n�1

�n2
�yun�1

, t� tb 7! 2y�1(t� tb), ⌫ 7! 2�(1+y)⌫ (7.3)

is the symmetry, i.e., it relates di↵erent solutions of Eq. (2.2). It is easy to see that the
asymptotic form (6.3) of the inviscid solution at the blowup point (t = tb and ⌫ = 0) does not
change under the transformation (7.3). For inviscid solutions un(t,�), the symmetry (7.3)
transforms the new variables (7.1) as

wn 7! wn�1

, ⌧̃ 7! ⌧̃ + ⌧
0

(7.4)

with ⌧
0

= 1� y. Also, the last relation in Eq. (7.3) yields the mapping

� 7! �+ �
0

, �
0

=
1 + y

4
=

⌧
0

⌧
1

(7.5)

for the parameter of the vanishing viscosity limit ⌫N = 2�4(�+N) ! 0 with ⌧
1

given by Eq. (7.2).
We see from Eqs. (7.4) and (7.5) that the arguments ⌘

1

= n � ⌧̃/⌧
0

and ⌘
2

= � � �c � ⌧̃/⌧
1

in Eq. (7.2) are chosen such that the functions Wn transform simply as

Wn(⌘1, ⌘1) 7! Wn�1

(⌘
1

, ⌘
2

), (7.6)

i.e., only with the change of shell number.
Recall that the asymptotic state (6.3) of the system at the blowup point tb is universal, i.e.,

it is independent of initial and boundary conditions up to the choice of the scaling parameter
c and signs �n. Hence, we can expect that similar universality holds after the blowup as well.
Thus, we conjecture (and confirm later numerically) that the functions in Eq. (7.2) have a
universal asymptotic form for large n. This asymptotic form should not be a↵ected by the
symmetry transformation (7.3), which leaves the asymptotic state (6.3) unchanged. Since
this transformation changes the shell number by one in the functions (7.6), their universal
asymptotic form, Wn(⌘1, ⌘2) ! W (⌘

1

, ⌘
2

), must be the independent of the shell number n.
Using Eq. (7.2), this yields the asymptotic expression of the form

wn(⌧̃ ,�) ! W

✓
n� ⌧̃

⌧
0

,�� �c �
⌧̃

⌧
1

◆
. (7.7)

Similarly to Eqs. (6.5) and (6.7), we understand the limit (7.7) pointwise for large n ! 1
with fixed ⌘

1

= n� ⌧̃/⌧
0

and ⌘
2

= �� �c � ⌧̃/⌧
1

.
Recall that the values of �, which di↵er by an integer number, correspond to the same

inviscid solution, see Section 5. Hence, the universal function W (⌘
1

, ⌘
2

) is periodic with
respect to the second variable as

W (⌘
1

, ⌘
2

) = W (⌘
1

, ⌘
2

+ 1). (7.8)

The power law (6.3), where tb corresponds to ⌧̃ ! 1, and the relations (7.1), (7.7), (7.8)
yield the left-side limiting value of the function W (⌘

1

, ⌘
2

) with respect to the first argument
as

lim
⌘1!�1

W (⌘
1

, ⌘
2

) = 1. (7.9)

16

It is straightforward to check that the transformation

un 7! �n�1

�n2
�yun�1

, t� tb 7! 2y�1(t� tb), ⌫ 7! 2�(1+y)⌫ (7.3)

is the symmetry, i.e., it relates di↵erent solutions of Eq. (2.2). It is easy to see that the
asymptotic form (6.3) of the inviscid solution at the blowup point (t = tb and ⌫ = 0) does not
change under the transformation (7.3). For inviscid solutions un(t,�), the symmetry (7.3)
transforms the new variables (7.1) as

wn 7! wn�1

, ⌧̃ 7! ⌧̃ + ⌧
0

(7.4)

with ⌧
0

= 1� y. Also, the last relation in Eq. (7.3) yields the mapping

� 7! �+ �
0

, �
0

=
1 + y

4
=

⌧
0

⌧
1

(7.5)

for the parameter of the vanishing viscosity limit ⌫N = 2�4(�+N) ! 0 with ⌧
1

given by Eq. (7.2).
We see from Eqs. (7.4) and (7.5) that the arguments ⌘

1

= n � ⌧̃/⌧
0

and ⌘
2

= � � �c � ⌧̃/⌧
1

in Eq. (7.2) are chosen such that the functions Wn transform simply as

Wn(⌘1, ⌘1) 7! Wn�1

(⌘
1

, ⌘
2

), (7.6)

i.e., only with the change of shell number.
Recall that the asymptotic state (6.3) of the system at the blowup point tb is universal, i.e.,

it is independent of initial and boundary conditions up to the choice of the scaling parameter
c and signs �n. Hence, we can expect that similar universality holds after the blowup as well.
Thus, we conjecture (and confirm later numerically) that the functions in Eq. (7.2) have a
universal asymptotic form for large n. This asymptotic form should not be a↵ected by the
symmetry transformation (7.3), which leaves the asymptotic state (6.3) unchanged. Since
this transformation changes the shell number by one in the functions (7.6), their universal
asymptotic form, Wn(⌘1, ⌘2) ! W (⌘

1

, ⌘
2

), must be the independent of the shell number n.
Using Eq. (7.2), this yields the asymptotic expression of the form

wn(⌧̃ ,�) ! W

✓
n� ⌧̃

⌧
0

,�� �c �
⌧̃

⌧
1

◆
. (7.7)

Similarly to Eqs. (6.5) and (6.7), we understand the limit (7.7) pointwise for large n ! 1
with fixed ⌘

1

= n� ⌧̃/⌧
0

and ⌘
2

= �� �c � ⌧̃/⌧
1

.
Recall that the values of �, which di↵er by an integer number, correspond to the same

inviscid solution, see Section 5. Hence, the universal function W (⌘
1

, ⌘
2

) is periodic with
respect to the second variable as

W (⌘
1

, ⌘
2

) = W (⌘
1

, ⌘
2

+ 1). (7.8)

The power law (6.3), where tb corresponds to ⌧̃ ! 1, and the relations (7.1), (7.7), (7.8)
yield the left-side limiting value of the function W (⌘

1

, ⌘
2

) with respect to the first argument
as

lim
⌘1!�1

W (⌘
1

, ⌘
2

) = 1. (7.9)

16



Right asymptotic: universal quasi-periodic solution

Properties:
1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

 t

 u
n

a

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

 n

 v
n

b

Figure 8: a) Magnified version of Fig. 1 near the blowup time tb ⇡ 2.35 represented by the ver-
tical red line. b) Before the blowup, t < tb, the self-similar inviscid dynamics (6.1) corresponds
to the asymptotic traveling wave (6.5) in renormalized variables vn(⌧) given by Eq. (6.4).
Shown are the variables vn, n = �1, 0, . . . , 30, at logarithmic times ⌧ = 0, 3⌧

0

, . . . , 21⌧
0

for
the inviscid solution with zero initial conditions and boundary values u�1

= u
0

= 0.7. The
symmetry parameters in Eq. (6.4) are c = 0.7 and �n = +1.

The exponent y ⇡ 0.281 is universal (independent of boundary and initial conditions). The
function U(⇠) is also universal and defined for ⇠  0 corresponding to t  tb, with U(0) = 1.
The convergence in Eq. (6.1) is pointwise for large n and arbitrary fixed ⇠, i.e., for

t = tb + ⇠ky�1

n ! t�b , n ! 1. (6.2)

In our example in Fig. 8a, the blowup time of the inviscid system is tb = 2.35 and one
can recognize the self-similar behavior (6.1) for t < tb. At the blowup time, one has ⇠ = 0 in
Eq. (6.1), which implies the asymptotic power law

un(tb) ! �nck
�y
n as n ! 1. (6.3)

Note that, since y < 1/3, the energy flux (2.5) tends to infinity for large shell numbers at the
blowup time tb, while the energy is finite, E(tb) < 1, and the enstrophy is infinite, ⌦(tb) = 1,
see also Fig. 5b.

Let us introduce the new shell variables as

un = �nck
�y
n vn, t = tb � 2�⌧/c. (6.4)

Then, following [10, 26], expression (6.1) can be written in the form

vn(⌧) ! V

✓
n� ⌧

⌧
0

◆
, (6.5)

where the function V (⌘), ⌘ 2 R, and constant ⌧
0

are defined as

V (⌘) = U (�2⌧0⌘) , ⌧
0

= 1� y ⇡ 0.719. (6.6)
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Quasi-periodic asymptotic expression independent of n:
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asymptotic form (6.3) of the inviscid solution at the blowup point (t = tb and ⌫ = 0) does not
change under the transformation (7.3). For inviscid solutions un(t,�), the symmetry (7.3)
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c and signs �n. Hence, we can expect that similar universality holds after the blowup as well.
Thus, we conjecture (and confirm later numerically) that the functions in Eq. (7.2) have a
universal asymptotic form for large n. This asymptotic form should not be a↵ected by the
symmetry transformation (7.3), which leaves the asymptotic state (6.3) unchanged. Since
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this transformation changes the shell number by one in the functions (7.6), their universal
asymptotic form, Wn(⌘1, ⌘2) ! W (⌘

1

, ⌘
2

), must be the independent of the shell number n.
Using Eq. (7.2), this yields the asymptotic expression of the form

wn(⌧̃ ,�) ! W
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⌧
0

,�� �c �
⌧̃

⌧
1

◆
. (7.7)

Similarly to Eqs. (6.5) and (6.7), we understand the limit (7.7) pointwise for large n ! 1
with fixed ⌘

1

= n� ⌧̃/⌧
0

and ⌘
2

= �� �c � ⌧̃/⌧
1

.
Recall that the values of �, which di↵er by an integer number, correspond to the same

inviscid solution, see Section 5. Hence, the universal function W (⌘
1

, ⌘
2

) is periodic with
respect to the second variable as

W (⌘
1

, ⌘
2

) = W (⌘
1

, ⌘
2

+ 1). (7.8)

The power law (6.3), where tb corresponds to ⌧̃ ! 1, and the relations (7.1), (7.7), (7.8)
yield the left-side limiting value of the function W (⌘

1

, ⌘
2

) with respect to the first argument
as

lim
⌘1!�1

W (⌘
1

, ⌘
2

) = 1. (7.9)
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Figure 9: a,b) Functions W
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and W
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describing behavior after the blowup in new shell coor-
dinates and logarithmic time (7.2). The functions are computed numerically using Eq. (2.2)
with 35 shells for viscosities ⌫ = 2�4(�+10), � = 0, 0.01, . . . , 0.99. The boundary and initial
conditions are as in Fig. 1. c) Similar computations for the function W

22

but for the boundary
and initial conditions un = k�y

n . The functions in figures a-c are almost identical, confirming
existence of the universal asymptotic form (7.7). Note that these figures correspond to the
same interval 3⌧

0

 ⌧̃  30⌧
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, which yields di↵erent intervals of ⌘
1

= n� ⌧̃/⌧
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for di↵erent n
in Eq. (7.2). d) Renormalized shell variables wn(⌧̃ ,�) computed under conditions of figures
a,b for � = 0 and di↵erent ⌧̃ , demonstrating quasi-periodic dynamics.

The limit on the other side follows from the period-3 condition (5.2), which implies that

wn ⇠ k
y�1/3
n ! 0 for large n with y � 1/3 < 0. This yields

lim
⌘1!1

W (⌘
1

, ⌘
2

) = 0. (7.10)

Note that the convergence in Eq. (7.10) is rather slow due to the small absolute value of the
exponent y � 1/3 ⇡ �0.0524.

The conjectured universal asymptotic form (7.7) fully agrees with the numerical simula-
tions. In Fig. 9a,b we show the results of high-precision simulations carried out for Eq. (2.2)
with the boundary conditions u�1

= u
0

= 0.7, zero initial conditions and very small viscosities
⌫ = 2�4(�+10) ⇠ 10�13 with � = 0, 0.01, . . . , 0.99 (the viscous range starts at nK ⇡ 30). Shown
are the functions Wn(⌘1, ⌘2) for n = 14 and 18, which are determined by the corresponding
shell speeds using Eqs. (7.1) and (7.2). These functions appear to be almost identical, confirm-
ing the asymptotic relation (7.7). Figure 9c shows the function W

22

(⌘
1

, ⌘
2

) of the analogous
simulation, but for the boundary and initial conditions un = k�y

n , n = �1, 0, 1, . . .. These
conditions correspond to the power law (6.3) at the blowup point satisfied exactly. Since
the function W

22

is the same as the functions W
14

and W
18

in Fig. 9a,b, we confirmed the
universality of the asymptotic form (7.7), i.e., its independence of the boundary and initial
conditions. Note that relations (7.8)–(7.10) are clearly satisfied in Fig. 9a-c with very slow
convergence in the last condition, as it was expected.

The asymptotic form (7.7) contains di↵erent periods ⌧
0

⇡ 0.719 and ⌧
1

⇡ 2.245 in two
di↵erent arguments of the function W . This means that, in renormalized variables (7.1),
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Figure 8: a) Magnified version of Fig. 1 near the blowup time tb ⇡ 2.35 represented by the ver-
tical red line. b) Before the blowup, t < tb, the self-similar inviscid dynamics (6.1) corresponds
to the asymptotic traveling wave (6.5) in renormalized variables vn(⌧) given by Eq. (6.4).
Shown are the variables vn, n = �1, 0, . . . , 30, at logarithmic times ⌧ = 0, 3⌧

0

, . . . , 21⌧
0

for
the inviscid solution with zero initial conditions and boundary values u�1

= u
0

= 0.7. The
symmetry parameters in Eq. (6.4) are c = 0.7 and �n = +1.

The exponent y ⇡ 0.281 is universal (independent of boundary and initial conditions). The
function U(⇠) is also universal and defined for ⇠  0 corresponding to t  tb, with U(0) = 1.
The convergence in Eq. (6.1) is pointwise for large n and arbitrary fixed ⇠, i.e., for

t = tb + ⇠ky�1

n ! t�b , n ! 1. (6.2)

In our example in Fig. 8a, the blowup time of the inviscid system is tb = 2.35 and one
can recognize the self-similar behavior (6.1) for t < tb. At the blowup time, one has ⇠ = 0 in
Eq. (6.1), which implies the asymptotic power law

un(tb) ! �nck
�y
n as n ! 1. (6.3)

Note that, since y < 1/3, the energy flux (2.5) tends to infinity for large shell numbers at the
blowup time tb, while the energy is finite, E(tb) < 1, and the enstrophy is infinite, ⌦(tb) = 1,
see also Fig. 5b.

Let us introduce the new shell variables as

un = �nck
�y
n vn, t = tb � 2�⌧/c. (6.4)

Then, following [10, 26], expression (6.1) can be written in the form

vn(⌧) ! V

✓
n� ⌧

⌧
0

◆
, (6.5)

where the function V (⌘), ⌘ 2 R, and constant ⌧
0

are defined as

V (⌘) = U (�2⌧0⌘) , ⌧
0

= 1� y ⇡ 0.719. (6.6)
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According to Eqs. (6.2) and (6.6), the convergence in Eq. (6.5) is understood in the limit

⌧ = ⌧
0

n+ const ! 1, n ! 1, (6.7)

i.e., pointwise for a constant ⌘ = n� ⌧/⌧
0

.
The function V (⌘) has the limits

lim
⌘!�1

V (⌘) = 1, lim
⌘!1

V (⌘) = 0, (6.8)

where the first condition follows from the property U(0) = 1. In the second condition, large
⌘ corresponds to the region of large shell numbers, where un decays faster than k�1

n due to
the finite enstrophy condition and, hence, vn ! 0 in Eq. (6.4).

Note that the limit ⌧ ! 1 for the logarithmic time ⌧ = � log
2

[c(tb � t)] corresponds to
t ! t�b . Hence, expression (6.5) describes the blowup as a traveling wave with the universal
stationary profile V (⌘) moving from smaller to larger shell numbers with constant speed ⌧�1

0

in logarithmic time ⌧ , see Fig. 8b. This implies periodicity of the rescaled shell speeds vn(⌧)
in Eq. (6.5), which attain the same values with the shift by one shell number after each period
⌧
0

.

7 Onset of spontaneous stochasticity after the blowup

After the blowup, t > tb, the inviscid solution is not unique, as we observed in numerical
simulations, Figs. 5a and 6b. We showed that this nonuniqueness is characterized by the
parameter � (mod 1) in Eq. (5.1), determining a specific form of the inviscid limit, ⌫N =
2�4(�+N) ! 0. At large times, the solutions un(t,�) converge to the stationary ones, as we
explained in the previous sections. In this section, we focus on the behavior just after the
blowup, i.e., in the limit t ! t+b , describing the onset of nonuniqueness and, thus, spontaneous
stochasticity.

Similarly to Eqs. (6.1)–(6.4), we introduce the functions wn(⌧̃ ,�) by changing the variables
as

un = �nck
�y
n wn, t = tb + 2�⌧̃/c, (7.1)

where c > 0 and the signs �n describe the symmetry transformations (2.7) and (2.8). The
second expression introduces a new logarithmic time variable ⌧̃ = � log

2

[c(t � tb)] after the
blowup, t > tb, with the right blowup limit, t ! t+b , corresponding to large ⌧̃ ! 1. An
arbitrary solution wn(⌧̃ ,�) can be represented as

wn(⌧̃ ,�) = Wn

✓
n� ⌧̃

⌧
0

,�� �c �
⌧̃

⌧
1

◆
,

�c = �1

4
log

2

c, ⌧
1

=
4� 4y

1 + y
⇡ 2.245,

(7.2)

where ⌧
0

= 1 � y as in Eq. (6.6); the constant �c is induced by the change of viscosity
⌫N = 2�4(�+N) due to symmetry transformation (2.7) with c = 2�4�c . This representation
resembles Eq. (6.5), but takes into account the dependence on �. The reason for the choice
of the second arguments in Wn will be clear below.
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Conclusion

• Inviscid limit in the Gledzer shell model is not unique. 

• Infinite number of limiting solutions are obtained for 
vanishing viscosities considered as geometric 
sequences: powers of 1/16.  

• Characterization of limiting solutions is carried out by 
renormalization of the viscous range. This leads to 
universal period-3 ultraviolet condition at every time, 
which depends on the energy dissipation rate. 

•  Non-uniqueness = spontaneous stochasticity starts at 
blowup time. Its initial stage has the universal quasi-
periodic form. 


