

Established by the European Commission

Slide of the Seminar

<u>Spontaneous stochasticity of velocity in</u> <u>turbulence models</u>

Prof. Alexei A. Mailybaev

ERC Advanced Grant (N. 339032) "NewTURB" (P.I. Prof. Luca Biferale)

Università degli Studi di Roma Tor Vergata C.F. n. 80213750583 – Partita IVA n. 02133971008 - Via della Ricerca Scientifica, I – 00133 ROMA

Spontaneous stochasticity of velocity in turbulence models

Alexei A. Mailybaev IMPA, Rio de Janeiro

Model

3D Navier-Stokes turbulence problem for large Reynolds numbers

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla P + \nu \Delta \mathbf{u}, \quad \nabla \cdot \mathbf{u} = 0$$

Gledzer shell model of turbulence (GOY/Sabra for imaginary speeds)

$$\frac{du_n}{dt} = \left(\frac{1}{2}k_{n-1}u_{n-1}u_{n-2} + \frac{1}{2}k_nu_{n+1}u_{n-1} - k_{n+1}u_{n+2}u_{n+1}\right) - \nu k_n^2 u_n$$

Shells n = 1, 2, ... describe speed fluctuations u_n at wavenumbers $k_n = 2^n$

Boundary conditions ("forcing"): $u_0 = const$, $u_{-1} = const$

Energy: $E = \sum u_n^2$ Enstrophy: $\Omega = \sum k_n^2 u_n^2$ Helicity: $H = \sum (-1)^n k_n u_n^2$ Energy flux: $\Pi_n = k_n u_{n-1} u_n u_{n+1} + 2k_{n+1} u_n u_{n+1} u_{n+2}$ Energy balance: $\frac{dE}{dt} = \Pi_0 - 2\nu\Omega$ Stationary solutions

Model symmetries

$$u_n \mapsto 2u_{n+1}, \quad \nu \mapsto 2^2 \nu;$$
$$u_n \mapsto cu_n, \quad \nu \mapsto c\nu, \quad t \mapsto t/c;$$
$$u_n \mapsto \sigma_n u_n, \quad \sigma_n = \pm 1, \quad \sigma_n \sigma_{n+1} \sigma_{n+2} = 1,$$
$$t \mapsto t + t_0.$$

Stationary solutions of inviscid model (Biferale et al. 1995)

$$u_{n+2}u_{n+1} = \frac{1}{4}u_{n+1}u_{n-1} + \frac{1}{8}u_{n-1}u_{n-2}, \quad n = 1, 2, \dots$$
$$c_{n+2} = \frac{1}{2} + \frac{1}{2c_{n+1}}, \quad c_n = \frac{2u_n}{u_{n-3}},$$

Fixed-point attractor: $c_n = 1$ as $n \to \infty$.

Period-3 asymptotic form of stationary solutions: $u_{3n+i} \rightarrow a_i k_{3n+i}^{-1/3}$, i = 1, 2, 3

(Kolmogorov scaling law / shock wave)

Viscous stationary solutions

$$u_{n+2}u_{n+1} = \frac{1}{4}u_{n+1}u_{n-1} + \frac{1}{8}u_{n-1}u_{n-2} - \frac{1}{2}\nu k_n u_n$$

Kolmogorov wavenumber: $k_K \sim \nu^{-3/4}$ Kolmogorov shell number: $n_K = \log_2 k_K = -\frac{3}{4} \log_2 \nu$ Inviscid dynamics: $n \ll n_K$

Viscous range: $n \gtrsim n_K$

Viscous range asymptotic

Dominant terms: $u_{n-1}u_{n-2} \approx 4\nu k_n u_n$. $\log_2 |u_n| \approx \log_2 |u_{n-1}| + \log_2 |u_{n-2}| - 2 - n - \log_2 \nu$.

Solution:
$$\log_2 |u_n| \approx b\sigma^n + \tilde{b}\tilde{\sigma}^n + 5 + n + \log_2 \nu$$

$$\sigma = (1 + \sqrt{5})/2, \ \tilde{\sigma} = (1 - \sqrt{5})/2$$

Asymptotic:
$$|u_n| \approx 32\nu k_n 2^{b\sigma^n}, \quad n \gg n_K$$

Inviscid limit for viscous range

Model symmetry: $u_n \mapsto 2^{1/3} u_{n+1}, \quad \nu \mapsto 2^{4/3} \nu, \quad t \mapsto 2^{2/3} t$

Stationary solution symmetry (integer N): $u_n \mapsto 2^N u_{n+3N}, \quad \nu \mapsto 2^{4N} \nu.$ $(n_K \mapsto n_K)$

Limit of vanishing viscosity (for fixed boundary conditions and any fixed parameter χ):

$$V_n(\chi) = \lim_{N \to \infty} 2^N u_{n+3N}^{[\nu_N]}, \quad \nu_N = 2^{-4(\chi+N)}, \quad n, N \in \mathbb{Z}$$

Infrared asymptotic of the limiting stationary solution V_n

$$V_{3n+i}(\chi) \to A_i(\chi) k_{3n+i}^{-1/3}$$
 as $n \to -\infty$, $i = 1, 2, 3$.

$$A_i(\chi) = \lim_{n \to -\infty} \lim_{N \to \infty} k_m^{1/3} u_m^{[\nu_N]},$$

$$m = 3(n+N) + i, \quad \nu_N = 2^{-4(\chi+N)}, \quad i = 1, 2, 3.$$

Periodicity: $A_i(\chi + k) = A_i(\chi), \quad i = 1, 2, 3, \quad k \in \mathbb{Z},$

Period-3 solution:

$$U_n(\chi) = \lim_{N \to \infty} u_n^{[\nu_N]}, \quad \nu_N = 2^{-4(\chi+N)},$$
$$U_{3n+i}(\chi) \to A_i(\chi) k_{3n+i}^{-1/3}, \quad i = 1, 2, 3, \quad n \to \infty$$

Universal form of the period-3 solution

Energy flux (dissipation rate): $D(\chi) = \lim_{n \to \infty} \prod_n = 3A_1(\chi)A_2(\chi)A_3(\chi)$ Model symmetry: $u_n \mapsto cu_n$, $\nu \mapsto c\nu$, $t \mapsto t/c$

Scaling of period-3 solution and energy dissipation rate: $A_i \mapsto cA_i$, $D \mapsto c^3D$

$$c = 2^{4(\chi - \tilde{\chi})} \qquad A_i = D^{1/3} \alpha_i \left(\chi + \frac{\log_2 D}{12}\right)$$
Numerical simulations:

$$\alpha_i(\chi) = \alpha \left(\chi - \frac{i}{3}\right), \quad i = 1, 2, 3$$
(complies with the model symmetry)
Universal asymptotic:

$$U_{3n+i} \rightarrow a_i k_{3n+i}^{-1/3}, \quad i = n, 2, 3$$

 $a_i(\chi, D) = \sigma_i D^{1/3} \alpha \left(\chi - \frac{i}{3} + \frac{\log_2 D}{12} \right), \quad i = 1, 2, 3, \quad n \to \infty$

Non-stationary solutions

Inviscid limit: definitions

Inviscid limit: $\nu_N = 2^{-4(\chi+N)} \rightarrow 0$

Relaxation time for period-3 solution (scaling symmetry): $t_{rel} \propto 2^{-2N} \rightarrow 0$

Instantaneous relaxation in inviscid limit!

Inviscid limit for **time-dependent** solutions:

$$u_n(t,\chi) = \lim_{N \to \infty} u_n^{[\nu_N]}(t),$$

Ultraviolet limit:

$$u_{3n+i}(t,\chi) \to a_i(\chi,D(t))k_{3n+i}^{-1/3},$$
$$i = 1, 2, 3, \quad n \to \infty$$

Numerical simulations

Simulation for zero initial and constant boundary conditions:

Ultraviolet asymptotic:

Stochastic definition of limiting solution

$$U_n(t) = \lim_{\mu \to +0} u_n^{[\nu]}(t), \quad \nu = \mu 2^{-4X}$$

with a random variable *X*, e.g., uniformly distributes in the interval [0, 1].

Spontaneous stochasticity

Dependence on viscosity **model**:

$$-\nu k_n^\beta u_n$$

Onset of spontaneous stochasticity: before and after blowup

Left asymptotic of blowup

Universal self-similar asymptotic (Dombre&Gilson, 1998)

$$u_n(t) \to \sigma_n c k_n^{-y} U(c\xi)$$
 with $\xi = k_n^{1-y} (t-t_b) \le 0$

Time scaling:

$$t = t_b + \xi k_n^{y-1} \to t_b^-, \quad n \to \infty$$

Scaling at blowup time:

$$u_n(t_b) \to \sigma_n c k_n^{-y} \quad \text{as} \quad n \to \infty$$

Renormalization and traveling wave representation:

$$u_n = \sigma_n c k_n^{-y} v_n, \quad t = t_b - 2^{-\tau} / c$$

$$v_n(\tau) \to V\left(n - \frac{\tau}{\tau_0}\right), \qquad \tau_0 = 1 - y \approx 0.719.$$

$$\tau = \tau_0 n + const \to \infty, \quad n \to \infty$$

Right asymptotic of blowup: renormalization

Symmetry:

$$u_n \mapsto \sigma_{n-1} \sigma_n 2^{-y} u_{n-1}, \quad t - t_b \mapsto 2^{y-1} (t - t_b), \quad \nu \mapsto 2^{-(1+y)} \nu$$

Renormalization:

$$u_n = \sigma_n c k_n^{-y} w_n, \quad t = t_b + 2^{-\tilde{\tau}}/c,$$

Solution representation:

$$w_n(\tilde{\tau}, \chi) = W_n\left(n - \frac{\tilde{\tau}}{\tau_0}, \chi - \chi_c - \frac{\tilde{\tau}}{\tau_1}\right),$$
$$\chi_c = -\frac{1}{4}\log_2 c, \quad \tau_1 = \frac{4 - 4y}{1 + y} \approx 2.245,$$

Symmetry for renormalized variables:

$$w_n \mapsto w_{n-1}, \quad \tilde{\tau} \mapsto \tilde{\tau} + \tau_0 \qquad \chi \mapsto \chi + \chi_0, \quad \chi_0 = \frac{1+y}{4} = \frac{\tau_0}{\tau_1}$$

 $W_n(\eta_1,\eta_1)\mapsto W_{n-1}(\eta_1,\eta_2)$

Right asymptotic: universal quasi-periodic solution

0.5

0.4

0.2

0.1

0

2

2.5

t

3

5 0.3

 $\tau_0 = 1 - y \approx 0.719$

 $\tau_1 = \frac{4 - 4y}{1 + y} \approx 2.245$

Properties:

$$W(\eta_1, \eta_2) = W(\eta_1, \eta_2 + 1)$$

$$\lim_{\eta_1 \to -\infty} W(\eta_1, \eta_2) = 1 \qquad \qquad \lim_{\eta_1 \to \infty} W(\eta_1, \eta_2) = 0$$

Conclusion

- Inviscid limit in the Gledzer shell model is not unique.
- Infinite number of limiting solutions are obtained for vanishing viscosities considered as geometric sequences: powers of 1/16.
- Characterization of limiting solutions is carried out by renormalization of the viscous range. This leads to universal period-3 ultraviolet condition at every time, which depends on the energy dissipation rate.
- Non-uniqueness = spontaneous stochasticity starts at blowup time. Its initial stage has the universal quasiperiodic form.